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Tiered background knowledge

Constraint-based causal discovery:

separation in graph⇔ (conditional) independence

Theoretical issue: Can at best estimate an equivalence class.

Practical issue: Algorithm sensitive to statistical errors.

With background knowledge: Estimate restricted equivalence
class represented by an MPDAG [Perković et al., 2017].

⇒ Contains information additional to independence.

⇒ Estimate more robust to statistical errors [Petersen et al.,
2021, Bang et al., 2024].
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Informativeness

CPDAGs: Encode (conditional) independencies

MPDAGs: Encode
(conditional)
independencies and
additional causal
information

DAGs: Encode
(conditional)
independencies and
all causal information
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Informativeness
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Informativeness
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For details: Bang and Didelez [2023]
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Finite sample data
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Finite sample data

Statistical tests might yield incorrect independence results
(e.g. directed edges contradicting the flow of time)

⇒ With background knowledge we do not necessarily get
more informative graphs – but we expect fewer errors.

Moreover: Inconsistent independencies might result in
conflicting edges – can be resolved by background knowledge.
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Robustness

Fewer edges tests:
If A ̸⊥⊥ C | ∅ and tier(A) ≤ tier(C) < tier(B),
then A ̸⊥⊥ C | {B}.
⇒ fewer type II errors (higher edge recall).

A

B

C

Resolving conflicts:
Assume that both A→ B ← C and B → C ← D then this might
be resolved by background knowledge⇒ fewer conflicts.

Fewer incorrect directed edges:
Suppose we incorrectly got A ⊥⊥ C | ∅
and A ̸⊥⊥ C | {B},
but tier(B) < tier(A) ≤ tier(C)
⇒ here v-structure ruled out by the tiers.

A

B
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Unobserved confounding

We now relax the assumption of no unobserved confounding
and consider ‘latent DAGs’.

Represent (pure) latent confounding using bidirected edges:

A B

L

A B
=⇒

Assume that all directed edges might be confounded:

A B A B
=⇒

Task: Adapt the expert graph!
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