# Multiple Comparisons

### Statistical Methods in Bioinformatics

Claus Thorn Ekstrøm
UCPH Biostatistics

Slides: biostatistics.dk/teaching/bioinform



### Data sizes. The $N \ll P$ problem





### The "Big Data" revolution

- 1. "Big P small N" problem with many modern large-scale-datasets: registers, images, text, \*-omics, ...
- 2. Need to reduce the dimension in some way
- 3. How do we evaluate significance when we have used the data for feature selection?
- 4. Multiple testing becomes an issue --- not just for high-dimensional data

# Example: Easy to find something "interesting"

```
sim \leftarrow function(n, p) \{ x \leftarrow matrix(rnorm(n*(p+1)), ncol=(p+1)) ;
                     DF <- data.frame(x) ;</pre>
                     names(DF)[p+1] \leftarrow "Y"; DF 
sim(100, 5) %>% lm(Y ~ ., data=.) %>% broom::tidy()
# A tibble: 6 × 5
 term estimate std.error statistic p.value
           <chr>
1 (Intercept) -0.149 0.104 -1.44 0.154
2 X1
         0.0373 0.0954 0.391 0.697
3 X2
             0.0243 0.0980 0.248 0.805
4 X3
             0.0668
                     0.124 0.538 0.592
5 X4
             0.270 0.0931 2.90 0.00468
             0.0360
                                0.349 0.728
6 X5
                      0.103
```

### Manhattan plot



### Multiple comparison problems

Errors committed when testing a single null hypotheses,  $H_0$ 

| Analysis result | Ho true | Ho false |
|-----------------|---------|----------|
| Reject          | α       | 1-β      |
| Don't reject    | 1-α     | β        |

lpha is the significance level

 $1 - \beta$  is the power

### Multiple comparison problems

The family-wise error rate (FWER) is the probability of making at least one type I error (false positive).

For *m* tests we have

$$FWER = P(\cup (p_i \leq \alpha))) = 1 - P(\text{no false positives}) = 1 - (1 - \alpha)^m \leq m\alpha$$

where the third equality only holds under independence, but the inequality holds due to Boole's inequality.

# Multiple testing



#### Multiple comparison problems

Number of errors committed when testing m null hypotheses.

| Analysis result | H_0 true | H_0 false | Total |
|-----------------|----------|-----------|-------|
| Reject          | V        | S         | R     |
| Don't reject    | U        | T         | m-R   |
| Total           | $m_0$    | $m-m_0$   | m     |

Here R, the number of rejected hypotheses/discoveries. V, S, U and T are unobserved. The FWER is

$$FWER = P(V > 0) = 1 - P(V = 0)$$

#### **Bonferroni** correction

The most conservative method but is free of dependence and distributional assumptions.

$$FWER = 1 - P(V = 0) = 1 - (1 - \alpha)^m \le m\alpha$$

So set the significance level for each individual test at  $\alpha/m$ .

In other words we reject the ith hypothesis if

$$mp_i \leq lpha \Leftrightarrow p_i \leq rac{lpha}{m}$$

#### Sidak correction

$$(1-(1-lpha)^m=lpha^*\Leftrightarrowlpha=\sqrt[m]{1-lpha^*}$$

Slightly less conservative than Bonferroni (but not much). Requires independence!

#### Holm correction

- 1. Compute and order the individual p-values:  $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(m)}$ .
- 2. Find  $\hat{k} = \min\{k: p_{(k)} > rac{lpha}{m+1-k}\}$
- 3. If  $\hat{k}$  exists then reject hypotheses corresponding to

$$p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(\hat{k}-1)}$$

#### Holm correction

Controls the FWER: Assume the (ordered) k is the first wrongly rejected true hypothesis. Then  $k \leq m - (m_0 - 1)$ .

Hypothesis k was rejected so

$$p_{(k)} \leq rac{lpha}{m+1-k} \leq rac{lpha}{m+1-(m-(m_0-1))} \leq rac{lpha}{m_0}$$

Since there are  $m_0$  true hypotheses then (Bonferroni argument) the probability that one of them is significant is at most  $\alpha$  so FWER is controlled.

#### Practical problems

• While guarantee of FWER-control is appealing, the resulting thresholds often suffer from low power.

In practice, this tends to "wipe out" evidence of the most interesting effects

• FDR control offers a way to increase power while maintaining some principled bound on error

### False discovery rate

Number of errors committed when testing m null hypotheses.

| Analysis result | H_0 true | H_0 false | Total |
|-----------------|----------|-----------|-------|
| Reject          | V        | S         | R     |
| Don't reject    | U        | T         | m-R   |
| Total           | $m_0$    | $m-m_0$   | m     |

Proportion of false discoveries is  $Q=rac{V}{R}$  . [Set to 0 for R=0]

The false discovery rate is  $FDR = E(Q) = E(\frac{V}{R})$ 

### **Estimating FDR**



### **Estimating FDR**



### **Estimating FDR**



#### Estimating FDR — BH step-up

Benjamini-Hochberg step-up procedure to control the FDR at lpha.

- 1. Compute and order the individual p-values:  $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(m)}$ .
- 2. Find  $\hat{k} = \max\{\overline{k: rac{m}{k} \cdot p_{(k)}} \leq \alpha\}$
- 3. If  $\hat{k}$  exists then reject hypotheses corresponding to

$$p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(\hat{k})}$$

#### Estimating FDR — BH step-up

*p*-values

$$egin{array}{lcl} { ilde p}_{(1)} & = & \min\{{ ilde p}_{(2)}, m p_{(1)}\} \ & dots \ { ilde p}_{(m-1)} & = & \min\{{ ilde p}_{(m)}, rac{m}{m-1} p_{(m-1)}\} \ { ilde p}_{(m)} & = & p_{(m)} \end{array}$$

Note that each  $p_i$  is smaller or equal to the criterium in Holm's method so controls the FWER.

#### Estimating FDR — BH step-up

If iid of the  $m_0$  tests (and all tests independent) and ordered so the  $m_0$  true tests comes first. Control FDR at level q:

$$egin{aligned} E(V/R) &= \sum_{r=1}^m E[rac{V}{r} 1_{R=r}] = \sum_{r=1}^m rac{1}{r} E[V 1_{R=r}] \ &= \sum_{r=1}^m rac{1}{r} E[\sum_{i=1}^{m_0} 1_{p_i \leq rac{qr}{m}} 1_{R=r}] = \sum_{r=1}^m rac{m_0}{r} [1_{p_1 \leq rac{qr}{m}} 1_{R=r}] = \cdots \ &= \sum_{r=1}^m rac{m_0}{r} [\sum_{i=1}^{m_0} 1_{p_i \leq rac{qr}{m}} 1_{R=r}] \ &= q rac{m_0}{m} \leq q \end{aligned}$$

#### q values

The q-value is defined to be the FDR analogue of the p-value.

$$q \ \mathrm{value}(p_i) = \min_{t \geq p_i} \widehat{\mathrm{FDR}}(t)$$

The q-value of an individual hypothesis test is the minimum FDR at which the test may be called significant.

#### q values

- When all m null hypotheses are true then FDR control is equivalent to FWER control.
- FDR approach generally gives more power than FWER control and fewer Type I errors than uncorrected testing.
- The FDR bound holds for certain classes of dependent tests. In practice, it is quite hard to "break"

## Evaluating complex methods and data

When we have complex data or complex procedures/algorithms (or perhaps just big data combined with simple methods) then we still with to evaluate their results.

How stable are the results?

### Randomzation/simulation tests

Sanity check: how does the method perform under realistic situations where there are *nothing* to be found?

```
sim(100, 5) %>% lm(Y ~ ., data=.) %>% broom::tidy()
# A tibble: 6 \times 5
     estimate std.error statistic p.value
 term
                               <dbl>
        <dbl>
 <chr>
                     <dbl>
1 (Intercept) -0.0646 0.0953 -0.678 0.499
2 X1
           -0.149 0.101 -1.48 0.142
3 X2
             0.0749 0.0928 0.808
                                     0.421
4 X3
            -0.151 0.0849 -1.78 0.0784
5 X4
             0.0464
                     0.09\overline{27} 0.501
                                     0.618
6 X5
            -0.202
                      0.0949
                              -2.13 0.0358
```

### Approximate the distribution

If we have information about the distribution under the null:

• Simulate data, run algorithm to get an idea about how it behaves

If we don't have information about the distribution under the null

- Permutations, randomizations
- Use bootstrap, subsampling

# **Exercises**