

Network biology approaches for high-throughput data analysis

Nadezhda T. Doncheva

nadezhda.doncheva@cpr.ku.dk

Statistical methods in bioinformatics University of Copenhagen May 1st, 2025

Who am I?

- Originally from Sofia, Bulgaria
- MSc in Bioinformatics at Saarland University (first Cytoscape app in 2007)
- PhD at Max Planck Institute for Informatics with external stay at University of California, San Francisco (meeting the Cytoscape team in 2013)
- Postdoc / Assistant professor at NNF Center for Protein Research, University of Copenhagen (working with STRING, Cytoscape & omics data since 2016)

Why networks?

- Enable us to characterize genome- and proteome-wide expression changes
- Usually result in hundreds of regulated molecular players (genes, proteins, etc.)
- It is challenging to derive relevant biological insights from 'omics data

Adapted from Griss et al., Mol & Cell Prot, 2020.

A typical proteomics dataset

Temporal analysis of neuroblastoma cells in response to nerve growth factor (NGF) by mass spectrometry (Emdal *et al.*, *Science Signaling*, 2015).

A typical proteomics dataset

They identified 78 proteins that interact with TrkA (tropomyosinrelated kinase A) after 5 min or 10 min of NGF stimulation.

	А	В	С	D	G	J
1	UniProt	Gene name	Peptides	Sequence coverage [%]	5 min log ratio	10 min log ratio
2	Q99880	HIST1H2BL	5	35.7	-2.66	-2.66
3	Q8TER5	ARHGEF40	34	28.3	1.95	1.56
4	Q8IZ07	ANKRD13A	12	19.2	1.07	1.08
5	P62805	HIST1H4A	11	57.3	-2.31	-1.39
6	Q08380	LGALS3BP	14	28.2	-3.16	-2.98
7	O00750	PIK3C2B	35	24.2	2.21	2.31
8	O00443	PIK3C2A	29	17.8	1.13	1.26
9	Q9UJ41	RABGEF1	6	6.5	0.67	1.08
10	Q8TC07	TBC1D15	12	19.1	0.43	1.06

5 min log ratio = \log_2 (abundance _{5 min} / abundance _{control})

From gene lists to networks

Protein interaction network with proteomics data visualized on the nodes

Networks are a **useful and intuitive abstraction** of complex biological systems that **lends itself to visualization**!

Koutrouli *et al.* (2024): Learning about understudied proteins through co-expression. *Bioinformatics*, 40.

Gordon *et al.* (2020): A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. *Nature*, 583.

Agenda

08:15 Introduction to biological networks + *exercise*

- 09:15 STRING & functional enrichment + *exercise*
- 10:15 Introduction to Cytoscape & stringApp + *exercise*
- 11:15 stringApp demo & exercises
- 12:00 Lunch break
- 13:00 Network visualization and analysis + *exercise*
- 14:00 Hands-on exercises / Work with your own data

Materials: https://tinyurl.com/netbio2025

Intended learning outcomes

- Describe biological networks and give examples for the most common representatives
- Name and describe the sources of information integrated in the STRING database
- Perform functional enrichment analysis
- Analyze omics data using Cytoscape & stringApp
 - Import your data into Cytoscape using stringApp
 - Master network layouts and data visualization
 - Perform clustering and enrichment analyses
- Know where to find relevant documentation and tutorials

What are networks?

- Consist of nodes (vertices, circles) and edges (links, lines)
- Represent relationships between the entities (nodes)
- Networks are everywhere...
 - Social networks (Facebook, LinkedIn)
 - Public transportation system
 - Nervous system
 - ... and many more

Biological networks

- Important to understand what the nodes and edges mean!
- Nodes can represent proteins, genes, metabolites, diseases, etc.
- Edges represent some kind of relationship between the nodes
 - Protein-protein interactions
 - Protein-ligand interactions
 - Metabolic reactions
 - Diseases comorbidities
 - Gene-disease associations

Pathways: metabolic, signaling, regulatory, such as KEGG

Interaction networks: protein-protein, protein-drug, such as STRING

Applications in Research

SARS-CoV-2-human network

- AP-MS with 26 SARS-CoV-2 proteins reveals 332 interactions with human proteins
- Merged human-human physical protein interactions to identify complexes
- Used fill color to highlight known drug targets

Gordon *et al.* (2020): A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. *Nature*, 583, Fig. 3

The bright side in the dark

- 30% of the genes in the human genome are considered "dark"
- FAVA: High-quality functional association network inferred from scRNA-seq and proteomics data
- Better studied proteins are green, understudied - purple, known physical interactions are shown as darker, thicker edges
- 1039 understudied proteins are connected to 611 better studied Koutrouli et al. (2024) Understudied ones by predicted interactions.
 Proteins in the FAVA network. Bioinformatics, Fig. 5

Do you already have some ideas, if and how you can use networks in your project(s)?

Version: 12.0

STRING

- Collect and integrate multiple types of evidence for known protein-protein associations
- Predict new associations and transfer across species
- Assign confidence score to each association

Joint collaboration between the groups of Christian von Mering (University of Zurich), Lars Juhl Jensen (University of Copenhagen), and Peer Bork (EMBL Heidelberg)

Query for protein trpA

STRING exercise 1

https://jensenlab.org/training/string/

- Query the database
- Inspect the evidence
- Change query parameters

Single Protein by Name / Identifier

(examples: <u>#1</u> <u>#2</u> <u>#3</u>)
Ψ
Advanced Settings

SEARCH

STRING evidence channels

Predictions from genomic context

12,535 organisms

Gene neighborhood

Korbel et al., Nature Biotechnology, 2004.

Experimental evidence

Co-expression

Pair-wise interactions from experiments in curated databases like IntAct & BioGrid Look for consistent similarities between expression profiles in many different conditions

Can	bee an	ny∞type	of bio)Ċħ	emi	cäl,	Species B	Include		oth: RN/	A-base	Interaction Type
biop like	hysic pull-d	al or ge	kperin	inte protein nent	erac ^{protein}	sapiens	Homo sapiens	expres proteir	sion exp	data a pressior	S WO emboj.2008.25 18309296	as physical association
MDM2	TP53	UniProt Q00987	UniProt P04637	protein	protein	Homo sapiens	Homo sapiens	• In vitro	√ 	molecular sieving	10.1038/ emboj.2008.25 18309296	association
MDM2	TP53	UniProt Q00987	UniProt P04637	protein	protein	Homo sapiens	Homo sapiens	In vitro	\checkmark	pull down	18485870	direct interaction

Gene co-expression networks

Commonly used measures: Pearson or Spearman correlation Issues:

- Data sparsity and redundancy
- Information is not always linear

van Dam et. al., Briefings in Bioinf, 2017

FAVA

~0.5M single cells and Human **Protein Atlas** ~32k proteomics studies PRIDE Encoder p(t) = N(t|0,I)KL Mean Var Mean squared divergence q(t|x) error L_{kl} L_{recon} Sampling (Latent space) Decoder Probability **Correlation Coefficient** Koutrouli et al., Bioinformatics, 2024

Dimensionality reduction using a variational autoencoder

FAVA performance

Koutrouli et al., Bioinformatics, 2024

"Higher-level" knowledge

Also known as Databases

Curated pathway databases like KEGG & Reactome

Known protein complexes

"Higher-level" knowledge

Text mining

Also known as Databases

Curated pathway databases like KEGG & Reactome

Known protein complexes

Co-occurrence text mining for functional associations

Natural language processing using deep learning methods for physical interactions

STRING confidence scores

Your Input:

SORCS2	VPS10 domain-containing receptor SorCS2; The heterodimer formed by NGFR and SORCS2 functions as receptor for the precursor forms of NGF (proNGF) and BDNF (proBDNF). ProNGF and proBDNF binding both promote axon growth cone collapse (in vitro). Plays a role in the regulation of dendritic spine density in hippocampus neurons (By similarity). Required for normal neurite branching and extension in response to BDNF. Plays a role in BDNF-dependent hippocampal synaptic plasticity. Together with NGFR and NTRK2, is required both for BDNF-mediated synaptic long-term depression and long-term poten [] (1159 aa)	Veighborhood	Gene Fusion	Cooccurrence	Coexpression	:Xperiments	vatabases Textmining	Homology]	score
NGFR	Tumor necrosis factor receptor superfamily member 16; Low affinity receptor which can bind to NGF, BDNF, NTF3, and NTF4. F		0	0	•	•			0.939
NGF	Beta-nerve growth factor; Nerve growth factor is important for the development and maintenance of the sympathetic and sens				0	•		•	0.927
BDNF	Brain-derived neurotrophic factor; Important signaling molecule that activates signaling cascades downstream of NTRK2. Duri						•		0.890
VPS35	Vacuolar protein sorting-associated protein 35; Acts as component of the retromer cargo-selective complex (CSC). The CSC is					0	•	•	0.761
SORT1	Sortilin; Functions as a sorting receptor in the Golgi compartment and as a clearance receptor on the cell surface. Required for	, •••					•	•	0.748
CELSR2	Cadherin EGF LAG seven-pass G-type receptor 2: Receptor that may have an important role in cell/cell signaling during nervou.								0.677

CELSR2	Cadherin EGF LAG seven-pass G-type receptor 2; Receptor that may have an important role in cell/cell signaling during nervou		٠	0.677
PSRC1	Proline/serine-rich coiled-coil protein 1; Required for normal progression through mitosis. Required for normal congress of chr		٠	0.670
NTF3	Neurotrophin-3; Seems to promote the survival of visceral and proprioceptive sensory neurons; Belongs to the NGF-beta family.	•		0.567
VPS26A	Vacuolar protein sorting-associated protein 26A; Acts as component of the retromer cargo-selective complex (CSC). The CSC i	•		0.552
GGA2	ADP-ribosylation factor-binding protein GGA2; Plays a role in protein sorting and trafficking between the trans-Golgi network (T			0.493

- However, it is not that simple:
 - Many databases
 - Different formats
 - Different names
- \rightarrow Parsers and mapping files ³²

- Varying quality
- Not comparable
- Not the same species

STRING score calibration

- \rightarrow Quality scores [0,1] based on a gold standard
- \rightarrow Common scale for comparison and implicit weight by quality

von Mering et al. Nucleic Acids Research, 2005

STRING confidence scores

https://string-db.org/help//faq/#how-are-the-scores-computed

STRING network visualization

Evidence view

Confidence view

Type of interactions

Functional associations vs. physical interactions

New since STRING v11.5

Access to STRING

- Web interface
- Evidence viewers
- Bulk download files

- Programmatic access
- Web services
- Cytoscape stringApp

Questions?

From gene lists to interpretation

STRING exercise 2

41

https://jensenlab.org/training/string/

- Data from a proteomics study
- Get network of multiple proteins
- Change query parameters
- Explore functional enrichment
- Show enrichment on network

From gene lists to enrichment

Enrichment analysis

Gene sets (pre-knowledge databases):

- Gene Ontology (GO)
 - Biological process (such as DNA repair, signal transduction)
 - Molecular function (such as catalysis, transport, binding)
 - Cellular component (such as mitochondria, ribosome)
- Pathways, e.g. KEGG or Reactome
- Genomic location
 - Chromosomal location
 - Enhancer regions/Transcription factors
 - Overlapping SNPs, etc.

Methodologies:

- Over-representation (enrichment) analysis
- Gene set enrichment analysis (GSEA)

Gene ontology example

Over-representation analysis

Given: a list of *regulated genes* or proteins and a list of *annotations (aka gene sets or enrichment terms)* such as GO biological processes

Goal: identify the *gene sets* that are statistically overrepresented in the list of *regulated genes* compared to a *background* list of genes

How: use *Fisher's exact test* to calculate a *p-value* and **correct for** *multiple testing* to get a false discovery rate value

	UniProt			
>	Biological Process (Gene Ontology)			
GO-term	description	count in network	strength	false discovery rate
GO:1902202	regulation of hepatocyte growth factor receptor signaling pa	2 of 4	2.95	3.45e-05
GO:0060267	positive regulation of respiratory burst	2 of 6	2.77	5.83e-05
GO:0045725	positive regulation of glycogen biosynthetic process	5 of 17	2.72	4.59e-11
GO:1990535	neuron projection maintenance	2 of 8	2.65	8.78e-05
GO:0032000	positive regulation of fatty acid beta-oxidation	2 of 9	2.6	0.00010
	000/50 45			* *

Gene set enrichment analysis

- *aka* GSEA is performed on a ranked list of all genes
- Kolmogorov-Smirnov test to identify which terms show a non-random distribution across the sorted gene list, followed by multiple testing correction

GSEA in **STRING**

Your input data 1: PKP1

2: CDSN

4: DSC1

5: DSG1

6: CALML5

7: ZNF750

32

8: SERPINB7

3: SERPINB5

Your detected functional enrichments

	Biological Process (GO)		
GO-term	description	count in gene set	false discovery rate
GO:0070268	comification	107	1.22e-13
GO:0031424	keratinization	180	1.73e-08
GO:0061436	establishment of skin barrier	19	7.48e-07
GO:0033561	regulation of water loss via skin	21	4.07e-06
GO:0050891	multicellular organismal water homeostasis	62	0.00070
	• • • • • • • • • • • • • • • • • • •		(more)

9: LCE2B	-7.4672216299570175
10: CHP2	-7.423878301199893
11: GJB6	-7.301189455146853
12: COL17A1	-7.2636604397081825
13: C19orf33	-7.1952071849953185
14: SBSN	-7.140458097049176
15: LY6D	-7.056120251292827
16: TRIM29	-7.034785864374081
17: FLG	-7.031575998772657
18: CRCT1	-7.0226906177601025
19: KRT15	-6.867025548520702
20: SPRR1A	-6.859561525754514
21: LOR	-6.848695263892816
22: CLCA2	-6.767725587791244
23: SLURP1	-6.7673021587277775
24: C1orf68	-6.6955745962812125
25: LGALS7	-6.6132404743408575
26: CST6	-6.585766047436771
27: LYPD3	-6.5731282095054295
28: DMKN	-6.4867482090614805
29: LCE1B	-6.460586585775241
30: WFDC5	-6.441728770048803
31: SPRR2G	-6.4192093272457145
32 CNEN	-6 284850600255222

-8.326649949152102

-8.130157304186698

-8.065760365992743

-7.917077464751732

-7.838328194641223

-7.706114452582677

-7.497837481276632

-7.5277671530949535

			(110/2)
	Reference publications		
publication	(year) title	count in gene set	false discovery ra
PMID:23921950	(2014) Highly rapid and efficient conversion of human fibroblasts to keratinocyte-like cells.	50	9.48e-11
PMID:26644517	(2015) A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid	67	1.75e-07
PMID:27408699	(2016) Recent advances in understanding ichthyosis pathogenesis.	23	1.16e-06
PMID:25695600	(2015) Structural and biochemical changes underlying a keratoderma-like phenotype in mice	53	1.16e-06
PMID:9892899	(1998) All-trans retinoic acid compromises desmosome expression in human epidermis.	6	0.00013
			(more)
	Cellular Component (GO)		
GO-term	description	count in gene set	false discovery ra
GO:0001533	cornified envelope	51	9.48e-13
GO:0097209	epidermal lamellar body	4	2.65e-06
GO:0030056	hemidesmosome	7	2.65e-06
GO:0030057	desmosome	25	5.34e-05
GO:0097539	ciliary transition fiber	10	0.0407
			(more)

Your input data

1: PKP1	-8.326649949
2: CDSN	-8.1301573041
3: SERPINB5	-8.0657603659
4: DSC1	-7.9170774647
5: DSG1	-7.8383281946
6: CALML5	-7.7061144525
7: ZNF750	-7.52776715?
8: SERPINB7	-7.4978374
9: LCE2B	-7.46722"
10: CHP2	-7.42?
11: GJB6	-7
The second secon	

arrier formation, Inc. Inthyosis pathogenesis. s underlying a keratoderma-lik desmosome expression in h

a in gene set	false discovery	
50	9.48e-11	
67	1.75e-07	
23	1.16e-06	
53	1.16e-06	
6	0.00013	
	(more)	

Full proteome network (Homo sapiens)

Questions?

From STRING to Cytoscape

- What if we want to ...
 - Create networks for large lists of genes
 - Integrate and easily show additional experimental data
 - Have more powerful analysis and visualization options

Cytoscape

- Open source tool for network analysis and visualization
- Large, active community of developers & users

However, Cytoscape itself doesn't know any biology

→ Cytoscape apps: apps.cytoscape.org

utility

layout

Sign In

Clusters a given network based on topology to find densely

Highly sophisticated algorithms for arranging networks.

more top downloads »

Wall of Apps 379 total

★ ★ ★ ★ ★ (34) 300746 downloads | citations | discussions

Details Release History

Categories: annotation, automation, data visualization, disease, enrichment analysis, gene-disease association, gene function prediction, import, interaction database, network generation, online data import, PPI-network, visualization

stringApp imports functional associations or physical interactions between protein-protein and protein-chemical pairs from STRING, Viruses.STRING, STITCH, DISEASES and from PubMed text mining into Cytoscape. Users provide a list of one or more gene, protein, compound, disease, or PubMed queries, the species, the network type, and a confidence score and *stringApp* queries the database to return the matching network. Currently, five different queries are supported:

- STRING: protein query -- enter a list of protein names (e.g. gene symbols or UniProt identifiers/ accession numbers) to obtain a STRING network for the proteins
- STRING: PubMed query -- enter a PubMed query and utilize text mining to get a STRING network for the top N proteins associated with the query
- STRING: disease query -- enter a disease name to retrieve a STRING network of the top N
 proteins associated with the specified disease
- STITCH: protein/compound query -- enter a list of protein or compound names to obtain a network for them from STITCH
- STRING: cross-species query -- choose two species to obtain a STRING network between and within the proteins of the interacting species

Cytoscape core concepts

Node Table 🔻

	Ø	Þ		J f(x) -	È,		
name	De	egree		the C	OMMON	-	gal1RGexp	
_194W			1	SNF3			0.13	9
R277C			2	MTH1			0.24	3
	name 194W 277C	name De 194W 2277C	name Degree	name Degree 194W 1 2277C 2	Image:	Imame Degree Imame f(x) Imame 194W 1 SNF3 2 MTH1	Image: mame Degree Image: mame f(x) Image: mame Image: mame 194W 1 SNF3 Image: mame Image: mam Image: mam Image: ma	Image: mame Degree Image: f(x) Image: f(x)

YIL052C	1	RPL34B	-0.258	3.7855E-5
YLR345W	1	YLR345W	0.108	0.012373
YBL079W	1	NUP170	-0.186	2.5668E-4
YBR045C	3	GIP1	0.786	5.5911E-6
YER054C	2	GIP2	0.057	0.16958
YPR145W	1	ASN1	-0.195	3.174E-5
YBR043C	1	YBR043C	0.454	5.373E-8

gal1RGsig

0.018043

2.186E-5

Networks e.g., protein-protein interaction networks

Tables

e.g., actual network data or annotations

Visual Styles

Cytoscape core concepts

Node Table	•	
------------	---	--

ø

C	Table	

_	_	_	2 4 3	-	_
		Titt	f(r)		L.
	ų Y	- [III]	Jul		

name	Degree	COMMON	🚠 gal1RGexp	📥 gal1RGsig
YDL194W	1	SNF3	0.139	0.018043
YDR277C	2	MTH1	0.243	2.186E-5
YBR043C	1	YBR043C	0.454	5.373E-8
YPR145W	1	ASN1	-0.195	3.174E-5
YER054C	2	GIP2	0.057	0.16958
YBR045C	3	GIP1	0.786	5.5911E-6
YBL079W	1	NUP170	-0.186	2.5668E-4
YLR345W	1	YLR345W	0.108	0.012373
YIL052C	1	RPL34B	-0.258	3.7855E-5

Networks

e.g., protein-protein interaction networks

Tables

e.g., actual network data or annotations

Visual Styles

Cytoscape automation

 Use commands from R, Python, or JavaScript to execute Cytoscape, stringApp, and other apps' functionality

https://github.com/cytoscape/cytoscape-automation/wiki

Let's try it out!

How many have installed Cytoscape 3.10.3?

If not installed yet, get it from here: <u>http://cytoscape.org/download.php</u>

≣

Install stringApp v2.2

https://apps.cytoscape.org/

Troubleshooting: If your browser doesn't allow you to install the app directly from the App Store, you can still **download** it. Then, switch to **Cytoscape** and go to **Apps** \rightarrow **App Store** \rightarrow **Install apps from file.** Find the downloaded app in your files and press the **Open** button.

stringApp exercise 1

https://jensenlab.org/training/stringapp/

In this exercise, we will perform some simple queries to retrieve molecular networks in Cytoscape using the stringApp.

Exercise 1.1: Protein queries

Pick two query types and try them out!

Question 1: How many nodes are in the resulting network? How does this compare to the maximum number of interactors you specified? What types of information do the **Node Table** and the **Edge Table** provide?

Exercise 1.2: Compound queries

Question 2: How is this network different from the protein-only network with respect to node types and the information provided in the Node Table?

Exercise 1.3: Disease queries

Question 3: Which additional attribute column do you get in the **Node Table** for a disease query compared to a protein query?

Exercise 1.4: PubMed queries

Question 4: Which attribute column do you get in the **Node Table** for a PubMed query compared to a disease query?

Import networks in Cytoscape

- Starting with a list of genes and no network data
 - stringApp
 - IntAct app

- Starting with a pathway of interest
 - KEGGscape app
 - ReactomeFI app
 - WikiPathways app
- Starting with your own network data
 - from files, e.g. Excel tables or text files
 - from R or Python via automation

stringApp

- STRING protein query
 - Queries for STRING interactions for one protein or for a list of identifiers
- STITCH compound query
 - Queries for protein-compound interactions
- STRING disease query
 - Queries for disease-associated proteins from DISEASES and for STRING interactions between them
- STRING **PubMed** query
 - Retrieves STRING interactions for proteins co-occurring with the query term in PubMed
- STRING cross-species query
 - retrieves STRING interactions between and within the proteins of two interacting species

stringApp protein query

$\bullet \bigcirc \bullet$	Import Network from Public Databases					
Data Source: STRING: protein query	\$	About				
Species: Homo sapiens		v				
All proteins of this species						
Enter protein names or identifiers:						
Q08188 Q08554 P61626 P81605 Q6ZMV7 P09104 P62937 Q13410 P13010 P12956 P30512 P09211 O75027 Q9UQ80 Q06830 P51858						
095757						
Network type: O full STRING network	O physical subnetwork					
Confidence (score) cutoff:	0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00	0.40				
Maximum additional interactors:	10 20 30 40 50 60 70 80 90 100	0				
Options: 🔽 Use Smart Delimiters 💿 Load Enrichment Data						
Cancel	Back	Import				

STRING network in Cytoscape

Node table (attributes)

Nodes (and edges) can have data associated with them

Table Panel							▼ □ :
	• 🛍 🎟 $f(x)$	Ċ					
	S stringdb	S stringdb	S stringdb	S stringdb	C compartment C	compartment	D tissue
🚠 display name	🚠 canonical name	description	📥 sequence	species	📥 cytoskeleton 📥	cytosol	blood
PHF1	O43189	Polycomb-like prot	MAQPPRLSRSGAS	Homo sapiens	5.0	0.326524	0.766667
EDAR	Q9UNE0	Tumor necrosis fac	MAHVGDCTQTPW	Homo sapiens		0.328125	0.750488
IL6	P05231	B-cell stimulatory f	MNSFSTSAFGPVA	Homo sapiens	2.617751	2.977923	4.0
CREB1	P16220	Cyclic AMP-respon	MTMESGAENQQS	Homo sapiens	1.709787	1.861972	3.449199
MS4A5	Q9H3V2	Membrane-spanni	MDSSTAHSPVFLV	Homo sapiens			
YWHAQ	P27348	Tyrosine 3-monoo	MEKTELIQKAKLA	Homo sapiens	2.200642	4.573817	4.794277
AKT1	P31749	V-akt murine thym	MSDVAIVKEGWLH	Homo sapiens	4.742235	5.0	3.61311
ADAM10	O14672	Disintegrin and me	MVLLRVLILLLSWA	Homo sapiens	0.905751	0.670166	4.566774
BIN1	075514	Box-dependent my	MAEMGSKGVTAG	Homo sapiens	4.193255	4.589923	4.468784
NCSTN	Q92542	Nicastrin; Essential	MATAGGGSGADP	Homo sapiens	2.584858	0.28125	1.411382
NRGN	Q92686	Neurogranin (prote	MDCCTENACSKP	Homo sapiens	1.019197	4.181165	2.951829
GIG25	Q6NSC9	Serpin peptidase in	MERMLPLLALGLL	Homo sapiens	2.315754	1.121397	3.634819
SYP	P08247	Major synaptic vesi	MLLLADMDVVNQ	Homo sapiens	3.11418	1.395096	1.911957
			Noda Tabla Eda	a Tabla Notw	ork Table		

- Subcellular localization scores (https://compartments.jensenlab.org/)
- TISSUES expression scores (<u>https://tissues.jensenlab.org/</u>)
- Pharos drug target information (<u>https://pharos.nih.gov/</u>)

Related databases: Jensenlab

- COMPARTMENTS: Subcellular localization database
- TISSUES: tissue expression database for human, mouse, rat and pig
- **DISEASES**: disease-gene associations mined from the literature
- All three provide confidence scores between 0 and 5 stars

http://jensenlab.org/resources/

Related databases: Pharos

https://pharos.nih.gov/

evidence: CURATED

MeanBankScore = 9 • Expand for more...

JensenLab Experiment TIGA

conf: 5

evidence:

Pharos drug target information

Visualize data using styles

- Visual attributes
 - Nodes: fill color, border color, border width, size, shape, opacity, label, etc.
 - Edges: line style, line color, line width, line opacity, ending type, ending color, etc.
- Mapping types
 - Continuous (numeric values)
 - Expression values, edge interaction scores
 - Discrete (categories)
 - Type of interaction, protein family
 - Pass-through (labels)

Know your identifiers

	А	В	С	D	G	J	
1	UniProt	Gene name	Peptides	Sequence coverage [%]	5 min log ratio	10 min log ratio	
2	Q99880	HIST1H2BL	5	35.7	-2.66	-2.66	
3	Q8TER5	ARHGEF40	34	28.3	1.95	1.56	
4	Q8IZ07	ANKRD13A	12	19.2	1.07	1.08	
5	P62805	HIST1H4A	11	57.3	-2.31	-1.39	
6	Q08380	LGALS3BP	14	28.2	-3.16	-2.98	
7	O00750	PIK3C2B	35	24.2	2.21	2.31	
8	O00443	PIK3C2A	29	17.8	1.13	1.26	
9	Q9UJ41	RABGEF1	6	6.5	0.67	1.08	
10	Q8TC07	TBC1D15	12	19.1	0.43	1.06	

Table Panel

📥 query term	name ^	description	📥 target family	🏥 tissue nervous system	🏥 5 min log ratio 🏥	10 min log ratio
014976	GAK	cyclin G associated kinase	Kinase	5	0.38	0.94
P62993	GRB2	growth factor receptor-bound		5	2.39	2.52
Q99880	HIST1H2BL	histone cluster 1, H2bl		2	-2.66	-2.66
P62805	HIST1H4F	histone cluster 1, H4f		5	-2.31	-1.39
095757	HSPA4L	heat shock 70kDa protein 4-like		3	-1.93	-1.12
Q7Z6Z7	HUWE1	HECT, UBA and WWE domain co		5	0.1	0.82
Q9Y4H2	IRS2	insulin receptor substrate 2		4	0.28	0.97
P14923	JUP	junction plakoglobin		4	-2.59	-2.18
075473	LGR5	leucine-rich repeat containing	GPCR	3	0.61	1.0
P02788	LTF	lactotransferrin		4	-3.26	-2.39
P61626	LYZ	lysozyme		3	-3.96	-2.88
Q86YT6	MIB1	mindbomb E3 ubiquitin protei		5	-0.43	0.88
075665	OFD1	oral-facial-digital syndrome 1		4	-0.52	0.85
P16234	PDGFRA	platelet-derived growth factor	Kinase	5	0.71	0.3

Node Table Edge Table Network Table

- **I** X

Expression data as node colors

Omics Visualizer app

- Import your multi-omics data as an **Omics Visualizer table**
- Retrieve a STRING network for the proteins in the table
- Visualize as pies inside or donuts around the nodes

Save data

- Cytoscape sessions save everything (.cys files)
- Export networks in different formats
- Export node & edge tables as text files
- Publication quality graphics in several formats

Questions?

stringApp demo

stringApp exercise 2

https://jensenlab.org/training/stringapp/

In this exercise, we will work with the list of proteins associated with epithelial ovarian cancer (EOC) in the study by <u>Francavilla *et al.*</u> to perform typical network import and visualization tasks.

2.1 Protein network retrieval & layout

Question 1: How many nodes and edges are there in the resulting network? Do the proteins all form a connected network? Why?

Question 2: Do any of the suggested layouts help you to recognize patterns in the network? In which way?

2.2 Discrete color mapping

Question 3: How many of the proteins in the network are ion channels or GPCRs? **Question 4:** How many kinases are in the network?

2.3 Data import

Question 5: Do you see the columns from the Excel table in the Node Table?

2.4 Continuous color mapping

Question 6: Are the up-regulated nodes grouped together?

Why use (biological) networks?

- Networks are powerful tools
 - ✓ Intuitive visualization
 - ✓ More efficient than tables
 - ✓ Reduce complexity
 - ✓ Great for data integration
- But also... Challenging!
- Many network analysis & visualization techniques available

Doncheva *et al.* (2019), *J Proteome Res*, 18(2): 623-632, Fig. 2 & 3.

Networks as tools

- Visualization
- Analysis

Doncheva *et al.* (2019), *J Proteome Res*, 18(2): 623-632, Fig. 2 & 3.

Networks as tools

- Visualization involves:
 - Data overlays
 - Layouts and animation
 - Exploratory analysis
 - Context and interpretation
- Analysis involves:
 - Topological properties
 - Hubs and robustness
 - Modularity/clusters
 - Data integration

Doncheva *et al.* (2019), *J Proteome Res*, 18(2): 623-632, Fig. 2 & 3.

Depiction

Various ways to depict biological networks

- Node-Link (graph) representation
- Partitioned Node-Link representation
- Matrix representation

- Visual variables: what can we vary to encode data?
 - Position

- Visual variables: what can we vary to encode data?
 - Position
 - Size

- Visual variables: what can we vary to encode data?
 - Position
 - Size
 - Shape

- Visual variables: what can we vary to encode data?
 - Position
 - Size
 - Shape
 - Color
 - Hue

- Visual variables: what can we vary to encode data?
 - Position
 - Size
 - Shape
 - Color
 - Hue
 - Saturation

- Visual variables: what can we vary to encode data?
 - Position
 - Size
 - Shape
 - Color
 - Hue
 - Saturation
 - Brightness / lightness / value

- Visual qualities: what are the visual variables good at?
 - Selective (easily spot groups with the same value)
 - \rightarrow all, except for shape

- Visual qualities: what are the visual variables good at?
 - Selective (easily spot groups with the same value)
 - \rightarrow all, except for shape
 - Quantitative
 - \rightarrow position and size

- Visual qualities: what are the visual variables good at?
 - Selective (easily spot groups with the same value)
 - \rightarrow all, except for shape
 - Quantitative
 - ightarrow position and size
 - Ordered
 - \rightarrow saturation and brightness, but not hue or shape

Example: protein families

Network layout: node position

Annotated: node size, brightness, saturation

Protein family: node hue

96

Confidence of interactions: edge width & saturation

Example: proteomics data

Direction: node hue

Magnitude: node brightness

Confidence: edge width & brightness

Tips & tricks

- Redundant encoding
 - E.g. size and brightness

Tips & tricks

- Redundant encoding
 - E.g. size and brightness

- Complementary encodings
 - E.g. size, brightness and hue (protein families example)
 - E.g. hue and brightness (proteomics data example)

Tips & tricks

- Redundant encoding
 - E.g. size and brightness

- E.g. size, brightness and hue (protein families example)
- E.g. hue and brightness (proteomics data example)

- Competing encodings
 - E.g. node hue and edge hue

Layouts

- Determine the location of nodes and (sometimes) the paths of edges on the 2D space
- Use them to emphasize the relationships between nodes
- There is not one *correct* layout \rightarrow Try different things!

Cross-species network created with stringApp 2.0, Doncheva et al., J Proteome Res, 2023.

Network clustering

- Captures the structure of the network by identifying dense subgraphs, e.g.
 - Protein complexes in protein-protein interaction networks
 - Functional modules in functional association networks
- Advantages for visualization → it can guide the layout of the network and be used for network simplification, e.g.
 - Represent each cluster as one node
 - Show only edges within clusters

Doncheva et al., J Proteome Research, 2019

Network clustering example

- Group nodes together based on a measure of similarity between the nodes, e.g. edges or edge weights
- MCL (Markov CLustering)
 - Fast algorithm
 - No need to specify number of clusters

Clustering in Cytoscape

clusterMaker2

Multi-algorithm clustering app for Cytoscape

★★★★☆ (23) 89244 downloads | citations | discussions

Release History

Categories: automation, clustering, data visualization, gene expression, grouping, heat map visualization, visualization

clusterMaker2 is the Cytoscape 3 version of the clusterMaker plugin. clusterMaker2 provides several clustering algorithms for clustering data within columns as well as clustering nodes within a network. This version also provides support for two new algorithms: Fuzzy C-Means and a new "Fuzzifier". In addition to providing clustering algorithms, clusterMaker2 provides heatmap visualization of both node data and edge data as well as the ability to create new networks based on the results of a clustering algorithm.

Current node attribute algorithms:

- Hierarchical
- K-Means
- K-Medoid

Version 1.3.1 Released 30 Oct 2018 Works with Cytoscape 3.6 Download Stats Click here

上 Download

stringApp functional enrichment

- Can be very useful for visualization
- Many categories: Gene Ontology, Pathways, Diseases & phenotypes, Tissues & subcellular localization, Protein domains, Publications
- Visualize significant terms
- Filter terms by category or remove redundant terms
- Group-wise enrichment on all clusters in the network

Animation

- Useful to show changes in a network:
 - Over a time series
 - Over different conditions
 - Between species

Animation

Questions?

stringApp exercise 3

https://jensenlab.org/training/stringapp/

In this exercise, we will continue to analyze the network of differentially abundant proteins from Francavilla et al. study.

Prerequisites: *install the app* **ClusterMaker2** *from the App store!*

3.1 Network clustering

Question 1: How many clusters have at least 10 nodes?

3.2 Subnetworks and physical interactions

Question 2: How many nodes and edges are there in this cluster?

Question 3: How many edges does the resulting network contain and why are there now fewer edges?

3.3 Functional enrichment

Question 4: How many statistically significant terms are in the table? Which is the most significant term for each of the categories GO Biological Process, GO Molecular Function, and KEGG Pathways?

3.4 Enriched publications

Question 5: What is the title of the most recent publication?

Supporting lectures

https://www.youtube.com/c/LarsJuhlJensen

Tutorials & getting help

- STRING & stringApp:
 - YouTube videos: <u>https://www.youtube.com/c/LarsJuhlJensen</u>
 - Tutorials & exercises: <u>https://jensenlab.org/training/</u>
 - Automation repository: <u>https://github.com/scaramonche/EuBIC2020_Cytoscape</u>
- Cytoscape
 - Tutorials: <u>https://github.com/cytoscape/cytoscape-tutorials/wiki</u>
 - YouTube videos: <u>https://www.youtube.com/channel/UCv6auk9FK4NgXiXiqrDLccw</u>
 - Helpdesk mailing list: <u>cytoscape-helpdesk@googlegroups.com</u>
 - Publications using Cytoscape: <u>https://cytoscape-publications.tumblr.com/</u>
 - Automation: <u>https://github.com/cytoscape/cytoscape-automation/wiki</u>

Hands-on exercises

- Continue with the online exercises at <u>https://jensenlab.org/training/</u>
- Work with your own data by adapting the exercises
- Try out one of the Cytoscape tutorials at <u>https://github.com/cytoscape/cytoscape-tutorials/wiki</u>
 - E.g. Basic data visualization, RNA-seq data analysis, Using WikiPathways App
- Use R or Python to access Cytoscape
 - Official R2Cy tutorial using stringApp: <u>https://cytoscape.org/cytoscape-automation/for-</u> <u>scripters/R/notebooks/stringApp.nb.html</u>
 - More automation tutorials at https://github.com/cytoscape/cytoscape-automation/wiki