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Why sequencing?

® Assemble the genome and transcriptome of a species

® Find genomic variation in a population

® Find genomic and transcriptomic associations with diseases and phenotypes

® Find organisms in environmental sample — metagenomics and -transcriptomics
[

Identify potential drug targets — personalized medicine

® Tracking of virus variants and mutations — vaccine development

= One of the biggest hammers in the tool box right now — always ask could this
experiment be done using sequencing instead?
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What is your application?



The beginning

® 1968 — The first 12 bases

® 1973 — 24 bases of the lactose-repressor binding site
— two years of work: one base per month

® 1977 — Sanger sequencing and Gilbert sequencing
— The Nobel Prize in Chemistry 1980 for Frederick Sanger and Walter Gilbert
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Evolution of sequencing technologies
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Today's programme

Alignment and mapping

Alignment methods

Dynamical programming of pairwise alignment (on paper)
Read mapping

Feature abundance and differential expression
Normalization + Transformation

Unsupervised + Supervised data exploration
Differential expression analysis (in R)
Summary and Discussion
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Alignment methods



Where do we need sequence alignments?
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Where do we need sequence alignments?

Sequence similarity

Gene finding by similarity

Protein structure by similarity

RNA structure by similarity

Motif finder

Genome and transcriptome assembly

Gene expression estimation
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Evolutionary events

® DNA sequences change in time.
® Find evolutionary related sequences.

® Evolutionary events:

INSERTION

CAGTCATG ——— CACTGTCATG ——— CACTGTCTG
SUBSTITUTION CACTATCTG

DUPLICATION INVERSION

CAGTCATG ———— CAGTGTCATG ———— CATCAGTGTG
CATTGACGTG
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Evolutionary tree

® Finding common ancestors.

® Parsimony principle: Evolution uses minimum number of operations.

CAGTCATG

CACTGTCATG
CA--GTC-CG

CACTGTCATG CAGTCCG

® Probabilistic approaches (max. likelihood or sampling).
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Alignments: optimize a score

CACTGTCATG
Score of a given alignment:
CA--GTC-CG

e HEE NSRS MR H R HE HEC R RS R H

Score: substituting a residue in one seq. with a residue in another.

Find the alignment that have the highest score.

Try out all alignment combinations? (we deal with this soon)

So speed of sequence comparisons matters!
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Score matrices for DNA

® |dentity: 8
® Transition: 2 (eg. {A,G} —: {A,G}; purine to purine)
® Transversion: -3 (eg. A— {C,T}; purine to pyrimidine).
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What about gaps?

® Gap cost. Cost of indel (Eg. d = 10).

® |nitiation and elongation.
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Dynamical programming

® Find the alignment between CACTGTCATG and CAGTCTG that has the maximal
score?

® What would be a trivial way?
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Dynamical programming

® Find the alignment between CACTGTCATG and CAGTCTG that has the maximal
score?
® What would be a trivial way?

® Basic idea: Use sub sequences! — Dynamic Programming
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Pairwise global alignments (Needleman—Wunsch)

Comparing sequences a and b. Given a substitution score s(x, y) of replacing letter x
with letter y, the highest scoring alignment can be found by the following recursion:

S(lilvjil> S(h./*l)
5(i—1,j—1)+s(a,-, bj) b -
S(i.j) = max{ S(i-1,j)—d s(ang)

S(i,j-1)—d

DI E—

a; residue at position / in seq. a
b; residue at position j in seq. b =d | .

i=1...,N; j=1,....M S(i-1, j) S(i, j)

Initialization: S$(0,0) = 0. Hence: S(i,0) = —id, 5(0,j) = —jd.

Note: the alignment takes time O(NM). 16127



Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

A

T

T

A
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Example of global alignment:
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Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG
A T T A T
0| -10 | -20 | -30 | -40 | -50 | -60 | -70 | -80 | -90 | -100
-10 8| -2 | -12 | 22 | -32 | -42 | -52 | -62 | -72 | -82
A | 20 | -2
-30 | -12
T | -40 | -22
-50 | -32
T | -60 | -42
-70 | -52
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Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

A T T A T

0| -10 | -20 | -30 | -40 | -0 | -60 | -70 | -80 | -90 | -100

-10 8 -2 | -12 | -22 | -32 | -42 | -52 | -62 | -72 -82

A | -20 -2 16 6 -4 | -14 | -24 | -34 | -44 | -54 -64

-30 | -12 6 13 3 4 -6 | -16 | -26 | -36 -46
T | -40 | -22 -4 8
-50 | -32 | -14 4
T | -60 | -42 | -24 -6
-70 | -52 | -34 | -16

20/127



Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

A T T A T

0| -10 | -20 | -30 | -40 | -0 | -60 | -70 | -80 | -90 | -100

-10 8 -2 | -12 | -22 | -32 | -42 | -52 | -62 | -72 -82

A | -20 -2 16 6 -4 | -14 | -24 | -34 | -44 | -54 -64
-30 | -12 6 13 3 4 -6 | -16 | -26 | -36 -46

T | -40 | -22 -4 8 21 11 12 2 -8 | -18 -28
-50 | -32 | -14 4 11 18 13 20 10 0 -10

T | -60 | -42 | -24 -6 12 8 26 16 17 18 8
-70 | -52 | -34 | -16 2 20 10 23 18 14 26
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Example of global alignment:

Align the two sequences CACTGTCATG and CAGTCTG

A T T A T

0| -10 | -20 | -30 | -40 | -50 | -60 | -70 | -80 | -90 | -100

-10 8 -2 | -12 | -22 | -32 | -42 | -52 | -62 | -72 -82
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T | -40 | -22 -4 8 21 11 12 2 -8 | -18 -28
-50 | -32 | -14 4 11 18 13 20 10 0 -10

T | -60 | -42 | -24 -6 12 8 26 16 17 18 8
-70 | =52 | -34 | -16 2 20 10 23 18 14 26

Back-tracking ...
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Pairwise local alignments (Smith—-Waterman)

Comparing sequences a and b. Given a substitution score s(x, y) of replacing letter x
with letter y, the highest scoring alignment can be found by the following recursion:

S(i—1, j—1 S, j—1
S(i-1,j-1)+s(a;, b)) (i-1,j-1) (i,j-1)

. S(i-1,j)—d s(and;) -

S(i,j) = max S(i,j-1)—d
0 |
. —d | ?[0
Note only positive numbers!

i=1,...,N; j=1,....M S(i—1,)) S(i, )

Initialization: S(0,0) = 0. Hence: S(i,0) =7, 5(0,/) =7.
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Pairwise local alignments (Smith—-Waterman)

Comparing sequences a and b. Given a substitution score s(x, y) of replacing letter x
with letter y, the highest scoring alignment can be found by the following recursion:
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S(i-1,j-1)+s(a;, b)) (i-1,j-1) (i,j-1)

L S(i-1,j)—d s(anbj) -
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i |
—d | .7l0

Note only positive numbers!
i=1,....,N; j=1,....M S(i—1,)) S(i, )
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Example of local alignment:

Align the two sequences AAACTGTTTAACAG and AACA

AAACTG.

T

T

T

T

A

A

0

0

0

0

0

0

=

O|lO|O|O|O|O0|O0|O|O|0|O0|O|O|O|O
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Example of local alignment:

AAACTG.

Align the two sequences AAACTGTTTAACAG and AACA
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Example of local alignment:

AAACTG.

Align the two sequences AAACTGTTTAACAG and AACA
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Example of local alignment:

Align the two sequences AAACTGTTTAACAG and AACA AAACTG.
Al A A T T[] T] T| A] & A

o] of of of of of of of of of of o] o] of o

Al o] 8] 8] 8] of of 2] o o o 8] 8] of 8] 2
Al ol 8l16] 16| 6] of 2 o] o] o 8[16] 6] 8] 10
o] of e[13]24]1a] 4] a| 2] 2] o] 6]24]14] 5

Al ofl 8] 8]1a|1a]21|16] 6] 1] o|10]| 8143222
o] 2101011112019 o] o 2[12] 5] 22]40

o] 2 af12] 7] 8] 19]26]16] 6] 2| 4| 9] 12] 30

o] 2] a| 6] 9] a|16]16[23]13] 8] a| 1]11]20

o] 2] a 6] 3] 6] 12|13 1320158 10] 1] 3] 19

Al o] 8J10]12] 3] of 8] 9f10|10[28]23][13] 9 9
Al ol 8l16]18] 9 o 2 5] 6] 7[18][36]26] 21 11
Al o 8l16]2a]15] 6] 2] o] 2| 3[15[26[33[34a] 24
o] o] e[1a[32]22]12] 4| 2| 4| 5|16 34]30] 31

T] o] o] of 4[22[40[30]20|12[10] 1| 6]24][31]27
o 2] 2 212304838 [28|18]12] 3|14]26] 39
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Time is important

® Dynamic programming: exact in O(NM).
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When becomes time an issue?
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BLAST (Basic Local Alignment Search Tool)

Less accurate than Smith-Waterman, BUT 50 times faster.

Idea: true matches are likely to have short stretches of identity (high score).
@ List of short words of fixed length that will match the query sequence (word
length: 3 for protein; 11 for nucleic acids).
@® Scan database for these words. Extend matches in both directions in an attempt
to find an alignment with a score exceeding S.

Segment pairs whose scores cannot be improved by extending or trimming are called
high scoring pairs (HSPs).
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What are the default parameter settings
of NCBI blastn and megablast?

Which differences in the alignments do
you expect based on their parameters?



Alignment score statistics

Question: Given a particular scoring system, how many distinct local alignments with
score >S can one expect to find by chance from the comparison of two random

sequences of lengths m and n?

Or in other words, when can a local alignment be considered statistically significant?
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E-values and P-values

The expected number of local alignments with a score of at least S is given by the
E-value for the score S:

E = Kmne

® Doubling the length of the query sequence (m) or the size of the database (n)
should double the number of local alignments.

® E-value decreases exponentially as score S increases.

The probability of observing at least one alignment with score > S

p=1—eF

= Sequence similarity score S is extreme value distributed

https://www.ncbi.nlm.nih.gov/BLAST/tutorial/
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Summary

¢ Dynamic programming (DP) saves time in sequence comparisons
® Some assumptions in DP, mention some

® In many applications, heuristics are needed to further speed up the comparison,
e.g., use only diagonals in dynamic programming
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Exercise: Dynamical programming of pairwise alignment

Complete the dynamic programming matrix of a global alignment:

Align the sequences ACGTG and AACGGTG using a match score
of 1, a mismatch of -4 and a gap cost of -10.

A|lC|G|T]|G
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Read mapping



Roadmap for RNAseq analysis

(a) Pre-analysis
Experimental design | | Sequencing design | | Quality control
A A
C N N )
Library Sequencing Replicate number it Randomization @ Randomization @ Read — -~
type length and sequencing depth Spike:ins? library prep sequencing run Rawiieads alignment Cuariesicy Feaakiiy
FY Py Py d Fe S Fe P Py Py >
kg ¥ T
Single Longer reads 3 replicates For quality control Avoids confounding Sequence quality, ~ Read 3’ bias, Correlation,
vs better for isoform  or power analysis  and library-size experimental factors GC content, uniformity, biotypes, PCA,
paired-end analysis softwar normalization with technical factors K-mers, duplicates GC content low-counts batch effects
(b) Core-analysis
Transcriptome profiling | | Differential expression | | Interpretation
A A A
C ] C N
Read Transcript Qi ificati Qi ificati Alternative .
alignment discovery level measure Difierential splicing analysis Functional profiling
d 3 Iy It It $ it It N
T ¥ i ki ke i ¥ ki
Mapping Compare to Transcript-level, Counts, Low-count filter, Parametric Splicing events, Overrepresented
or existing gene-level, RPKM/FPKM, bias removal, vs. isoform expression functions, GSEA,
assembly annotations exon-level TPM normalization non-parametric pathway analysis
(c) Advanced-analysis
I Visualization | | Other RNA-seq | | Integration I
A
- I - N I
Genome ‘Sashimi plots, Small and other ~ Gene fusion e Single-cell eQTLSQTL Chromatin TF binding Proteomics/
browser  splice graphs, etc. non-coding RNAs  discovery 9 analysis (e.g. ATAC-seq) (e.g. ChIP-seq) metabolomics

I Il i I il I . }

s

b—»

Conesa, Ana, et al. " A survey of best practices for RNA-seq data analysis" Genome Biol. 2016
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When becomes time an issue?

® Target is entire genome
® Target is all observed sequences (e.g. RefSeq non-redundant database)

® Query are millions of reads

48/127



How many reads do we get from modern Illumina sequencing?

MiSeq HiSeq 4000 NovaSeq 6000 S4
Run Time 4-56 hours 2-4 days 36-44 hours
Maximum Qutput 15 Gb 1500 Gb 2400-3000 Gb
Average Read Output 22 - 25 million 250 - 400 million 2,000 - 2,500 million
Maximum Read Length 2 x 300 bp 2 x 150 bp 2 x 150 bp

https://med.stanford.edu/gssc/services/sequencingl.html
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Raw data (Sequencing reads)

The FASTQ format:

Q@ERR459145.1 DHKW5DQ1:219:DOPT7ACXX:2:1101:1590:2149/1
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGTTCAGC

+

Q@7<DBADDDBH?DHHIQ@DH>HHHEGHIIIGGIFFGIBFAAGAFHA’57B@D

@: begin header
2:1101 flowcell lane 2, tile 1101
® x and y coordinates: 1590:2149

/1 single-end reads;
/1 and /2 paired-end (mate-paired) reads

read sequence
® quality encoded ASCII characters
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What is read mapping?

Determine position of a short read on the reference genome or transcriptome.

Reference: ...AA-CGCCTT... | = match
[c=:1111] : = mismatch
Read: AGGGGCCTT - = gap
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Naive mapping

Search for query at each position in reference genome

ACGTTACCGAATCGATCAAAGTCGA
GTTA

m = query length, n = genome length
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Naive mapping

Search for query at each position in reference genome

ACGTTACCGAATCGATCAAAGTCGA
GTTA

m = query length, n = genome length
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Naive mapping

Search for query at each position in reference genome

ACGTTACCGAATCGATCAAAGTCGA
GTTA )

m = query length, n = genome length — Time: O(mn)
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Naive mapping

® Human Genome (queries) would take far too long:

® [llumina/Solexa sequencing technology produces
50 — 200 million, 32 — 100 bp short reads

® Mapping these reads to a 3.2 billion bp human genome is a challenge

® Far worse when we allow for Indels and mismatches.

— Are optimal alignments based on quality scores still feasible?
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Principles of mapping reads

® Most computational time is spent on alignment.
® Many sequenced reads are redundant

® We do not need to search the entire genome each time again.
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Book analog

Do not search the entire book, instead search the book index.

Springer Protocols

Jan Gorodkin
Walter L. Ruzzo Editors

RNA Sequen

Structure,

and Function
Computational
and Bioinformatic
Methods

—:, ¢ Humana Press

Gorodkin et al. Methods Mol Biol. 2014
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k-mer
" k-mer" is a substring of length k
For example sequence GGCGATTCATCG:

4-mer GGCG, GCGA CGAT 3-mer GGC, GCG, CGA, GAT

e |
o
2 4
2 o
g °
2
8
2
§
]
g N /
5 o7 /
W fruit fly (130 Mbp)
<o | @ T. vaginalis (176 Mbp)
- B grapevine (487 Mbp)
| chicken (1.08 Gbp)
/ O dog (2.41 Gbp)
/ W human (2.91 Gbp)
21 /
T T T T T

T
200 400 600 800 1000

o

K-mer Length (bp)

Schatz et al. Genome Res 2010
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Read mapping through indexing

In principle read mapping is to map an exact piece of sequence to the genome.

An index is a data structure that improves the speed of data retrieval operations at the
cost of additional storage space to maintain the index data structure.

Quick search for matches in an entire genome.

Index structure of the entire genome takes a lot of memory.
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Why might an exact mapping not always
be what we want?

Which concerns might you have when
mapping genomic sequence’?

Which concerns might you have when
mapping transcribed sequence?



Indexing problems

Flexibility and constraints:

® Frrors versucannots natural variation:
trade-off in error threshold.

e Computational efficiency (time / memory):
allowed mismatches / unique mappings.

® Balance between speed, memory and reported mappings.
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Indexing method choice is crucial!

¢ Hash-based (BLAST, Salmon, Kallisto)

¢ Suffix arrays (Salmon, STAR)

A sorted table of all suffixes (substrings) of a given string

¢ Burrows-Wheeler Transform (BWA, SOAP2, Bowtie2, Hisat)

A compressed form of suffix arrays

62/127



Indexing is often used for seed matching

” Seed-and-extend“ approach

@ find the best possible match of a seed in an index made up from the reference
genome

® every matched seed is extended on both sides by optimal local alignment

(Common software]
STAR, HISAT2, BLAST

63/127



Transcriptome versus genome mapping

paired-end read

easy to align easy to align
a~

I B AN transcriptome

exon 1 exon 2 exon3

[ insErt Size m—

paired-end read

easy to align hard to align

—— I L e

genome
exon 1 exon 2 exon 3

— insert size #
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Splice-aware genome mapping

There are many mappers, but they must be able to detect splice junctions to be used
in transcriptome assembly and quantification.

5 Exon 1 Exon 2 3

Donor Acceptor

Splice Site Splice Site
& Exonic Nucleotides V' Intronic Nucleotides —> & Intronic Nucleotides ™ Exonic Nucleotides —>
IN[NINININ[NJG[T[NN[N]N] INNINNJA[G]NININN[N]N]

K Default splicing region j

used by Variant Classification

[Common splice-aware alignment software}
STAR, HISAT2, BLAT, TopHat (based on Bowtie2), Segemehl
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Sashimi Plot: Visualization of spliced reads
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Aligner's speed

Runtime
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Baruzzo et al. " Simulation-based comprehensive benchmarking of RNA-seq aligners. “ Nature Methods 2017
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Percent of total bases

Aligner's accuracy

100 -

75 -
Measurement
W Aligned correctly

50 - m Aligned ambiguously
B Aligned incorrectly

o5 II Unaligned

d

a -
-
a -
-

tdt dt di dt dt dt dt d - Novel variants / RNA editing
9‘:30&'2&%%%585853 > . .
o & % Sdz23 % = 52 8 :f,::_ 8 - Allele-specific expression
¥ "oTIIgz9 o 3pe < | -Genome annotation
c T Z (@] < . .
é = %) 2 - Gene and transcript discovery

- Differential expression

Baruzzo et al. " Simulation-based comprehensive benchmarking of RNA-seq aligners.” Nature Methods 2017
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Quantification — estimation of expression

Quantification:
Count reads mapping to a genomic feature (gene, transcript, exon etc)

— genomic features can be annotated (e.g., NCBI RefSeq genome annotation) or be
predicted (e.g., transcriptome assembly)

Assumption:
Number of reads produced from a feature ~ feature’s relative abundance in the sample
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I
[ S

Gene-level quantification

Union

Gene A

Gene A

Gene A

Gene A

Gene A

Ambiguous

Ambiguous

Ambiguous

® By default ambiguous reads are not
counted

® By default multi-mapping reads
(reads aligning with multiple
locations) are not counted

[Common read counting softwarej

featureCounts, HTSeq
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Transcript-level quantification

Quantify per transcript (not just exon or gene)

o 000000260 & DBLEBOOLS
$358s8
oo E s
o9 ENSTO0000880605.1
000
ENSToo0088117 1
ENSTooaoosigos 1
;
ENSTooooosstizs

1
ENST00000549338,1  evsssiecn:
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Why is it important for transcript-level
quantification to consider ambiguous
reads?



Transcript-level quantification

® Statistical methods are used to find the probability that a read originates from a
specific transcript.

e | Beware of annotation quality

® Suggested reading: CSAMA tutorial, Zhang et al. “Evaluation and comparison of
computational tools for RNA-seq isoform quantification.” BMC Genomics 2017

[Common software]
RSEM, Cufflinks, Kallisto, Salmon, Sailfish

Fig: https://www.gtexportal.org/home/gene/SLC25A3
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https://github.com/Bioconductor/CSAMA/blob/2018/lecture/2-tuesday/RNAseq-isoform-love.pdf

Alignment-free methods (" pseudoaligners")

@ Focus: Only annotated transcripts (not entire genome!)
@® Pseudoalign: K-mer composition of reads/transcripts
©® Abundance estimation

@ GC-content, transcript position correction included (e.g. 3' end degragation)

dramatic increase in speed; improvements in accuracy for gene-level quantification

absolute reliance on a precise and comprehensive transcript annotation; no information
on where each read is mapping

[Com mon softwa re]

Salmon, Kallisto, Sailfish
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Summary: From reads to count matrix

Genome Transcriptome De novo

Mapping Mapping Assembly

STAR, RSEM, Kallisto, Trinity
HISAT2 Sailfish, Salmon

Splice-aware
genome mapping

htseqg-count, Cufflinks,

Transcript mapping
and quantification
featureCount StringTie
Gene Reference based
counting assembly of transcripts
& counting

l Homology-based

De novo assembly
into transcripts

l Trinotate

Novel transcript
annotation

annotation

Novel transcript
annotation
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Normalization + Transformation
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Estimation of gene expression

You are analyzing 2 genes (gene A and B) in two conditions (condition 1 and 2) on the
bases of an RNA-seq experiment that resulted in the following number of reads:

Condition 1 | Condition 2
Gene A 1000 3000
Gene B 2000 4000

Are the following statements correct?

® Both genes A and B are more expressed in condition 2.

O Gene B is more expressed than gene A.
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Estimation of gene expression

We cannot state any such thing since we do not know

® sequencing depth (library size),
expression of all other genes within the sample

— RNA-seq data informs about the relative abundance BUT NOT about the
absolute abundance.

O gene length,
the longer the gene, more reads will be mapped
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Estimation of gene expression

We cannot state any such thing since we do not know

® sequencing depth (library size),
expression of all other genes within the sample

— RNA-seq data informs about the relative abundance BUT NOT about the
absolute abundance.

O gene length,
the longer the gene, more reads will be mapped

Solution: Control (Normalize) for

@ sequencing depth

® compositional bias
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Normalization

R = Reads count for the gene
G = Gene length in kilobases
T = Total number of mapped reads in a sample

Reads/Fragments Per Kilobase Counts Per Million (CPM):
transcript per Million mapped reads CPM = L%OG
(RPKM/FPKM):
R .
RPKM /FPKM — (7/106) ® Sum .01.‘ all CPMs is constant
G (1 million).
RPKM is used for single end reads ® Does not consider gene lengths.

FPKM is used for paired end reads.

® First metric used in the old times
(e.g. cufflinks).
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Simple normalization could fail

Genes Control Treated

Gene A 10 30
Gene B 30 90
Gene C 5 15
Gene D 1 3

Gene N 1000 240
Total 1046 378
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DESeq2’'s median of ratios (sample-wise "size factor")
Assumption: most genes are not differential expressed

1. For each gene, calculate geometric mean
Genes Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Geomean

Gene 1 34 56 23 12 10 30 23
Gene 2 10 6 7 11 12 8 9
Gene n 65 78 67 34 56 23 50

2. For each gene, calculate ratio to geometric mean
Genes  Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Gene 1 1.5 2.4 1.0 0.5 0.4 1.3
Gene 2 1.1 0.7 0.8 1.3 1.4 0.9
Gene n 1.3 1.6 1.4 0.7 1.1 0.5

3. Take median of these ratios as sample normalization factor ("size factor")

1.3 1.6 1 0.7 1.1 0.9
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Summary: Normalization

Use raw counts when using DGE packages, e.g., DESeq2 and edgeR, as
normalization is done internally

RPKM/FPKM/CPM are not recommended for DGE analysis
CPM is usable for visual data exploration (heatmap, abundance comparison, PCA)

| g

Median of Ratios (DESeq2) and Trimmed Mean of M-values TMM (edgeR)
perform the best for DGE analysis

Log; normalized valess

T L ey

DESeq THM ] RPKM RewCourt

other solutions: spike-ins/house-keeping genes

Dillies et al. “A comprehensive evaluation of normalization methods for Illumina high-throughput RNAseq data analysis.” Brief Bioinform. 2013
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Transformation of sequencing-depth-normalized read counts

Logy transformation: Transformation incl variance shrinkage:
untransformed read counts log2 - transformed read counts
P’ | library size normalized log2 (read counts) rlog-transformed read counts
b R RN B B Tt
o o PRI 2 o ! A i -
S © o s o, ° £ 3 o
AR IR A I IR o 3 21
© [H R R
L, i : N I § o [ S B T N N
f jllj.lj. : ﬁiHBBHHHH F ]
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0 0 5 10
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For clustering, heatmaps etc use VST (DESeq2), VOOM (limma) or RLOG (DESeq2)

Challenge your data by different normalization methods — robustness of DGE analysis

Eder et al. “NVT: a fast and simple tool for the assessment of RNA-Seq normalization strategies” Bioinformatics 2016
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Alternative: Compositional data analysis

DESeq's median of ratios and edgeR’'s TMM are less suitable in highly asymmetrical
or sparse datasets — unacceptably high false positive DEGs

® ratio transformations capture the relationships between the features in the dataset

® centered log-ratio (clr) transformation:
xclr = [log(x1/G(x)), log(x2/ G(x)) - . . log(xp/ G (x))]
G(x)= {x1-x ... Xp

e clr-transformed values are scale-invariant (same ratio with few as well as many
read counts)

® to calculate G(x) we have to delete, replace or estimate the 0 count values

® estimate technical variation within each sample using Monte-Carlo instances drawn
from the Dirichlet distribution — probability vector prior to clr transformation

Gloor et al. “Microbiome Datasets Are Compositional: And This Is Not Optional” Front Microbiol 2017
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Unsupervised + Supervised data exploration



Explore global and local read count patterns

@ unsupervised

no a priori information is needed
— to detect technical noise and batch effects

® Dimensional reduction — Principle Component Analysis (PCA)
® Clustering — hierarchical, k-means

PCA and clustering should be done on normalized and transformed read counts so that
high variability of low read counts does not occlude potentially informative data trends.

® supervised

usage of known biological labels
— differential expression
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Principle component analysis — PCA
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Ringnér et al. “What is principal component analysis?” Nature Biotechnology. 2008
88/127


https://www.nature.com/articles/nbt0308-303

12]

Principle component analysis — PCA

® transforms measurements into new variables that are truly independent
® new variables of most variance are the principal components
® dimensionality reduction

R Applications:

A
R/ Hindbrain ® visualization of your data in lower
j F (E2) _ :
| FM &2 dimensions (2D, 3D)
| M (E2

2 F
0 MED|  Mew e find patterns in numeric data
jﬁ M;&(FZ) e identify batch effects or other
i %F\(F/ : possible covariates (e.g. male and
o Srais female) by labeling them
R A TR R R i

t[1]

Pradhan et al. Behav Brain Funct 2015
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PCA to detect batch effects

2

PC2

Genotype

KO
® wT

Batch

® A
A B

e PC1 separates the genotype (group of interest); however
® PC2 separates the batch effect (or other covariates)

® e.g. experiment date, sex, experimenter, different RNA isolation kit (you name it!)
® When batch effect is observed in PCA plots, add it as covariate to your GLM

® ~ Batch + Genotype
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Clustering
There are several clustering algorithms and more are being developed. Why?

Ronan et al. “Avoiding common pitfalls when clustering biological data” Science Signalling 2016
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Clustering
There are several clustering algorithms and more are being developed. Why?

® No clustering algorithm is perfect

® Remember! Always "see” your data and judge if the clusters make sense

® The performance of the clustering algorithm depends on the structure of your data

K-means Ward DBSCAN Mixture models

No str

# A
J’ i —I’X e,

Two nested circles Two half-moons Two wide clusters _Three clusters

£ N # (3
0 iey
el il

Ronan et al. “Avoiding common pitfalls when clustering biological data” Science Signalling 2016
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Finding patterns in your data

Let's assume that you got these 4 genes differentially expressed in your dataset

gene_1 I 100
gene_2

Raw data

80
gene_3

60
gene_4

40
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€ |0Jjuod

¥ |0Jjuod

G |0J4juod
| Juswyeal
FARUEINEEN
¢ juswyes)
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{ juswiealy

G juswiealny

Can you identify a pattern?
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Finding patterns in your data

Perhaps this gives you a better hint
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mean
standard deviation
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https://en.wikipedia.org/wiki/Standard_score
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Centering data
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Scaling data
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/-score

z-score (centered & scaled)
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Hierarchical clustering

® No need for pre-defining the number
of c830007lusters

® Results dependent on

@ distance metric: euclidean,

manhattan, Pearson correlation etc.

@® clustering method: Ward,
complete, average etc.

® Used with heatmaps, thus allows
better visual inspection of data
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® use normalized read counts (rlog, CPM etc.)

Effect of transformations and distance metrics on clustering

® transform your data for better scaling (log2, z-score transformation etc.)

A

No transformation

Log,

Reference data
D
A
Be oC
A D
: |
C

No transformation

Log,

Euclidean Manhattan Cosine
A o A A
Be oC Be oC
A A A
(o4 C
l
B ¢ B c B c

Ronan et al. “Avoiding common pitfalls when clustering biological data” Science Signalling 2016
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Differentially expressed genes

Expression level of gene 1

Control: Treated:

Replicate 1 24 Replicate 1 23
Replicate 2 25 Replicate 2 26
Replicate 3 27 Replicate 3 102

Is this a differentially expressed gene?

You might get different answers depending of which software you run.
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Differential gene expression

Common scientific question:
Quantification and statistical inference of systematic changes between conditions.

Principles are the same as for all other significance tests:

@ Use the replicates (samples of the same conditions) to estimate the
within-condition variability (variance) of the expression

® Use the expression and variance to test whether the difference between conditions
is random or not

The test’s statistical power increases with more biological (and technical) replicates!
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Parametric vs. non-parametric methods

It would be nice to not have to assume anything about the expression value
distributions but only use rank-order statistics.

However, it is hard to show statistical significance with non-parametric methods if only
few replicates are available (less than 8).
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Issues with DGE analysis for RNA-seq

Couldn't we just use a Student’s t-test for each gene?
@ Distribution is not normal. Which parametric distribution should | use?
® Variance across groups may not be homogeneous e.g. unequal group size
©® The number of replicates is often too small to estimate the variance.

O If we test each gene for DE, we have to account for multiple testing!
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Which parametric distribution should | use?

Models for read counts originated from the idea that each read is sampled
independently from a pool of reads and hence the number of reads for a given gene
follows a ...
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Binomial distribution

The binomial distribution works when we have a fixed number of trials n, each with a
constant probability of success p.

The random variable X is the number of k
successes:

+ p=0.5 and n=20
p=0.7 and n=20
* p=0.5 and n=40

n

p(XZk)=<k

) pi(1—p)"k

evsslossiess®  *e.ly “eecssccscsses

0.00 0.05 0.10 0.15 0.20 0.25

Event: An RNA-seq read "lands" in a
given gene (success) or not (failure)

As RNA-seq experiments produce large number of reads (n is large) the Gaussian
distribution can replace the binomial.
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Poisson distribution

RNA-seq experiments produce large number of reads (n is large) and probabilities of
success are small (p is small) which can be modelled by the poisson distribution which

is an approximation of the binomial.

Instead we know the average number of
successes per intervall:

A=np

For X ~ Poisson(\), both the mean and
the variance are equal to .

o e o0 |
> > >

(L
[ETRNSN
4 4
A
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Poisson versus negative binomial distribution

Many studies have shown that the variance grows faster than the mean in RNAseq data.
This is known as overdispersion.

W Poisson
B Negative Binomial

!

1e+08

1e+00

Pooled gene-level variance (log10 scale)
1e+04

5 50 500 5000 50000

Mean gene expression level (log10 scale)
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Negative binomial distribution

The negative binomial distribution works for discrete data over an unbounded positive
range whose sample variance exceeds the sample mean.

The random variable X is the number of trials needed to make r successes (and k
failures) if the probability of a single success is p:

Negative Binomial Distribution PDF

k +r— 1 r :n;zo pZO:S
NB(X = k) = < k > p (1 — p)k 01 . n=20 p=0.75

Probability

o
o
]

both the mean and variance can be
calculated from r and p

50
Random Variable
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Fitting a negative binomial GLM

Raw count for gene i in sample j Controls the variance
~ NB(mean = y,;, dispersion =(a;)
k’/;
M =

Normalization (“size”) factor 7 .. Normalized count

.~~~ Design matrix

-- Control or Treatment?

-- Batch (e.g., flow cell, plate, lab)
-- Other co-factors (e.g., gender)

Generalized Linear Model (GLM) coefficients
-- One for each Design matrix column (factor)
= strength of effect
. =log2 fold change for each gene
Coefficient @
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rlog

Interpretation of the negative binomial GLM

Normalized expression values of snf2 (YOR290C)

A

genotype

Linear regression model (LM) is evaluated

for every gene: Y = by + by xx1 + €

Y ...describes all read counts for a gene

by ...average of baseline group,

e.g., control

x1 ...design factor,

e.g., condition (often 0 or 1)

by ...coefficent that captures the
difference between different conditions
€ ...error or uncertainty

— the closeness of b; to zero will be
evaluated during statistical testing steps

— DESeq?2 and edgeR use a generalized
linear model (GLM)
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Design & contrast matrix

Design matrix (a.k.a. model matrix) has 2 main roles:

@ defines the form of the model, or structure of the relationship between genes and
explanatory variables

@ is used to store values of the explanatory variable(s)

Contrast matrix is used for:

@ identifying the differences (contrast) between explanatory variables
e.g. groupi Vs group;
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Basic regression models

Covariates: quantitative
measurements (e.g. age) Factors: categorical variables (e.g. genotype)

expression = 3 + [,age expression = 3, wildtype + 3,mutant expression = B, + [,mutant

oo
g

expression
expression
expression

s

wildtype mutant wildtype mutant

genotype genotype

 Original data points ~— Expected gene expression

z Expected gene expression
(based on model) -

- (of non-reference levels in mean-reference model)

Law CW, Zeglinski K, Dong X et al.A guide to creating design matrices for gene expression experiments. F1000Research 2020, 9:1444
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Design matrix with intercept
x is an indicator variable for sick mice:
e x = 1 for sick mice
® x — 0 otherwise
E(y) = 2.95 + 1.62x

E(y) = 2.95 = 295 (for healthy group)
E(y) = 295 + 1.62 = 457 (for sick group)

> model..matrix(~group)
O
o & .
& &&' o 45T femeeecccccccoans Coccooss
¢ o > *
; N = .
1 1 ) 94
2|1 0 g .
3 1 ) <3
4 1 1 &
5 1 1
6 1 1)
- J
HEALTHY SICK (x=1)

group

contrast = ¢(0,1)

Law CW, Zeglinski K, Dong X et al.A guide to creating design matrices for gene expression experiments. F1000Research 2020, 9:1444
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Design matrix without intercept

x1 is an indicator variable for healthy x2 is an indicator variable for sick mice:
mice: .
[ ] =
® x1 = 1 for healthy X2 = 1 for sick
® x1 = 0 otherwise ® x2 = 0 otherwise

E(y) = 2.95x, + 4.57x,
295 (for healthy group)

Ey) = 2.95
E(y) = 4.57 = 457  (for sick group)

> model.matrix(~0 + group)

%
%,
%
2
s
i

expression (y)
S

Qs wn e
SeermRg
rhrrese o

HEALTHY (x,= 1) SICK (.= 1)
group

contrast = c(-1,1)

Law CW, Zeglinski K, Dong X et al.A guide to creating design matrices for gene expression experiments. F1000Research 2020, 9:1444
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Design matrix with intercept

E(y) = 1.03 + 1.09x, + 1.97x, + 3.87x;

E(y) = 1.03 = 1.03 (for control)

E(y) = 1.03 + 1.09 = 212  (for treatment I)
E(y) = 1.03 + 1.97 = 3.00 (for treatment Il)
E(y) = 1.03 + 3.87 = 490 (fortreatment Ill)

> model.matrix(~treatment)
o & & &
R & 0@“ a 0@“ 490 F======-ccccccccecco $--
& & & &

& < x$ x<
1 1 [ 0 0 =
2 1 0 0 0 2 amtocccoococcooooc Neccooooas
3 1 ] 0 0 s

7] .

dr 1 e e AR $omeemmem e
6 1 1 ] ] 3
7 1 ] 1 ] 1.03
8 1 0 1 ]
9 1 [} 1 0 . . . ;
10 1 0 ] 1
11 1 0 0 1 CTL 1 (x,=1) x,=1 11 (%, =1)
12 3 0 0 a treatment

ContraSttreatment,,, vs control = C(O, 0, 0, ]-)

Law CW, Zeglinski K, Dong X et al.A guide to creating design matrices for gene expression experiments. F1000Research 2020, 9:1444
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Design matrix without intercept

E(y) = 1.03x, + 2.12x, + 3.00x, + 4.90x,

E(y) = 1.03 = 1.03 (for control)
E(y) = 212 = 212 (for treatment 1)
E(y) = 3.00 = 3.00 (for treatment 1)
E(y) = 4.90 = 4.90 (for treatment I11)
> model.matrix(~@ + treatment)
o4 & <
< & & &
o\\eo « ; a d&e‘\ 4.90 $
y;eo <% <% <
1 1 0 0 0 =
2 1 0 0 0 T 300 $
3 1 ) ) ) ] . v
4 0 1 0 0 2 212
5 [ 1 0 0 e d
6 0 1 0 0 2
7 0 0 1 0 © 103 .
8 0 0 1 0
9 0 0 1 0 § § . .
}? g g g } CTLix=1 l&x=1 =1 llx=1
12 4 4 0 1 treatment

ContrQSttreatmentm vs control = C(_]-a 07 07 1)

Law CW, Zeglinski K, Dong X et al.A guide to creating design matrices for gene expression experiments. F1000Research 2020, 9:1444
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Design matrix for multiple covariates

group factor is converted from two factors representing tissue samples and cell types

E(y) = 1.03x, + 2.12x, + 3.00x, + 4.90x,

Ey) = 1.03 = 1.03
E(y) = 212 = 212
E(y) = 3.00 = 3.00
Ey) = 490 = 490

b4 5
& @ N
S & N & 4.90
N R o Sy
1 1 0 0 0\ =
2 1 0 0 0 2 300
3 1 [ [ 0 §
4 ) 1 0 [ 2 212
5 0 1 [ [ 2
6 o 1 [} 0 £
7 0 0 1 0 1.03
8 ) 0 1 0
9 0 0 1 0
0| 0 0 ) 1
1| e 0 ) 1
12 \_o ] ) 1)

(for lung B-cells)
(for brain B-cells)
(for lung T-cells)

(for brain T-cells)

LUNG B BRAIN.B LUNG_T BRAIN_T
=1 =1 ) =1

group

contrastgrain_B vs BRAIN.T = ¢(0,—1,0,1)
contrast; yNG vs BRAIN = C(0.5, —0.5,0.5, —0.5)

Law CW, Zeglinski K, Dong X et al.A guide to creating design matrices for gene expression experiments. F1000Research 2020, 9:1444
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E(y) = 210 + 053sin(Yat) + —1.87cos("3t)

> model.matrix(~sinphase + cosphase)

ntercept)  tine
1 1 0.87
2 b 0.87
3 1 0.87
4 1 0.87
5 1 1.2e-16
6 1 1.2e-16
7 1 -0.87
8 1 -0.87
9 1 -0.87
| 1 .87
1| o1 -2.4e-16
2| 1 -2.4e-16
FER .87
14| 1 0.87
15 1 0.87
6| 1 0.87
7| o1 3.7¢-16
| o1 3.7e-16
9\ 1 087
0 \_1 -0.87

tine2

B

boorrosbbl

hd
hinsshinnneshnnns s

bbb

expression (y)

Design matrix for cyclic time

2101

/
0238

series

Law CW, Zeglinski K, Dong X et al.A guide to creating design matrices for gene expression experiments. F1000Research 2020, 9:1444
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Design matrix for cyclic time series

E(y) = 210 + 053sin(Yat) + —1.87cos("3t)

> model.matrix(~sinphase + cosphase)

CIntercept)  tine time2

1 1 0.5 \

2 1 o5

3 1 05

4 1 05

5 1 10

H 1 Ex) =

7 1 -0.5 =

8 1 0.5 § 210+
9 1 0.5 2

| 1 05 8

| o1 1.0 g

2| 1 1.0 8 /
el Y 05 023
w1 o5

5|1 05

| o1 05

7| o1 10

8| 1 Lo time ()
9\ 1 o5

0 \_1 -5 }

E(y) = 2.09 + 0.25t + 0.45sin("/31) + —1.90cos("3 1)

> model .matrix(~times sinphase + cosphase)

(Intercept)  time  sinphase  cosphase
1 /1 1 0.87 0.5

2 (1 1 0.87 0.5

3|1 2 0.87 05 _
4|1 2 0.87 05 =

s |1 3 12e16 10 s

6 | 1 3 12e-16 1.0 ]

7 |1 4 0w 05 g

8 | 1 4 a7 05 g

9 | 1 5 o7 o5 H

0| 1 5 087 05

1|1 6 -2.4e-16 1.0

2|1 6 ~2.4e-16 1.0 am
1B |1 7 0.87 s

1|1 7 0.87 0.5

5|1 8 0.87 05 019)/
% | 1 8 0.87 05

7|1 9 37e16 1.0

B | 1 9 37e16 1.0

19 | 1 10 -0.87 0.5 time (t)
0 \1 0 0.7 05

Law CW, Zeglinski K, Dong X et al.A guide to creating design matrices for gene expression experiments. F1000Research 2020, 9:1444
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Dispersion estimate

o
o
2
@
8 | @
5 =
o a
g 3 3
@ ] §
5 - :
8 i a_ 31‘ o
2 ® gene-est b+ = I I I'.:
T o fitted e
© N (=]
QL ° fina
2 T T T T T §
1e+01 1e+02 1e+03 1e+04  1e+05 S T T T
mean of normalized counts 1 100 10000

mean of normalized counts

® Not enough replicates to estimate dispersion for individual genes
® Borrow information from genes of similar expression strength among the replicates

® Genes with very high dispersion left as is
119/127



Implementation of DGE testing for RNA-seq

Seq. depth normalization: DESeq2 uses sample-wise size factor, edgeR and
Limma-Voom use TMM

Assumed distribution: edgeR and DESeq model the count data using a negative
binomial distribution and use their own modified statistical tests based on that.
Limma-Voom uses log-normal distribution and t-test.

Dispersion estimate: edgeR, DESeq2, Limma-Voom (in slightly different ways)
"borrow" information across genes to get a better variance estimate.

Statistical test to examine if the changes are statistically significant: DESeq2
provides the Wald test or the likelihood ratio test; edgeR uses quasi-likelihood
(QL) F-test or likelihood ratio test

Multiple testing issue: All current packages report false discovery rate FDR (most
often Benjamini-Hochberg corrected p values).
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Multiple testing issue
® Assume that you are comparing genes between condition A and B

® You would expect 1 in 20 (5/100) genes to be significant with p < 0.05 level
assuming independence of tests
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Usingle = 0.05
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Multiple testing issue
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Multiple testing issue
Assume that you are comparing genes between condition A and B

You would expect 1 in 20 (5/100) genes to be significant with p < 0.05 level
assuming independence of tests

Probability of observing a type-| error (false positive) in a single test:

Usingle = 0.05

Probability of not observing a type-| error (false positive) in a single test:
/Bsingle =1—a=0.95

If you run a test with 20 (n) genes:

Bmuttipe = (1 — @)™ = 0.95%° = 0.36

Likewise, type-1 error for multiple comparisons become:

Omuttiple = 1 — (1 — )" = 0.64
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Multiple testing issue
® Assume that you are comparing genes between condition A and B

® You would expect 1 in 20 (5/100) genes to be significant with p < 0.05 level
assuming independence of tests

® Probability of observing a type-l error (false positive) in a single test:
asingle =0.05

¢ Probability of not observing a type-l error (false positive) in a single test:
/Bsingle =1—a=0.95

® If you run a test with 20 (n) genes:
Bmuttipe = (1 — @)™ = 0.95%° = 0.36

® |ikewise, type-l error for multiple comparisons become:
Omuttiple = 1 — (1 — )" = 0.64

® If the number of tests (m) increases, the type-l error rate amypipe Will reach to 1

® This inflation of « has to be handled by multiple testing correction for p-values

® Most applied method for omics studies is Benjamini-Hochberg method (a.k.a.
False Discovery Rate, FDR)
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Visualization of DE analysis

MA-plot (Bland-Altman)

log fold change

o

1 100 10000

mean of normalized counts

~log10(Pvalue)

5

Volcano plot

Normalised counts

normalized count

1000 2000 5000

500

ENSG00000189221.9

group

trt
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An overview of statistical tests for DGE analysis

edgeRQLFDetRate
MASTcpmDetRate
limmatrend
MASTtpmDetRate
edgeRQLF

ttest

voomlimma

edgeRLRTdeconv
monoclecensus
ROTStom
ROTSvoom
DESeq2betapFALSE
edgeRLRTrobust
monoclecount
DESeq2
DESeq2nofilt
ROTScpm
SeuratTobit
] NODES
[] DESeq2census
scDD

| 18] |s|s|s|sjs|s[s] | Is] | {sfs] sjs)s)

Oom
=] |
OOmm
2242222200200
2235388883833 ¢
23 o5 3o IO S23S 3
5o 8335358 meZy
g7 Y3r3cs ogEd
® zgE® 4g°
e E

Ieood

Intermediate

I Poor

Classical tests (t-test, Wilcoxon) still
perform well

However, they cannot handle
complex designs

Advanced methods (e.g. DESeq2,
edgeR, limma) can handle complex
experimental designs

Choose your method carefully based
on your needs

If you don't know what to do,
advanced methods are still the way
to go

Soneson & Robinson. Bias, robustness and scalability in single-cell differential expression analysis. Nature Methods (2018)
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Very large sample sizes

® population-level RNA-seq studies
® single cell RNA-seq

A L3 B DESeq2 edgeR limma-voom

o
=)
)

T
-
H>o
w
&
@

o
ejep pajnwied woiy
$H3A payiusp! Jo %

-y
o
<
# of identified DEGs

# of identified DEGs
n
o
<

from permuted data

NOISeq dearseq Wilcoxon

o
y
L
L 3
T
o

N 0 ; ; : ; ; ;
» 1 401 801 1 401 801 1 401 801
* # of identified DEGs from the original data (0.1%) (40.1%)(80.1%)(0.1%) (40.1%)(80.1%) (0.1%) (40.1%)(80.1%)
# of permuted datasets where a gene is wrongly identified as a DEG

— Non-parametric approaches, e.g., Wilcoxon rank-sum test, perform best.

Li et al. Exaggerated false positives by popular differential expression methods when analyzing human population samples. Genome Biol (2022)
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Alternative: Compositional data analysis
ALDex for differential expression analysis:
@ Add a small prior count to the observed counts for taxa j across all samples
® Draw Monte Carlo samples using the Dirichlet distribution
©® Transform the samples using the Centered log ratio (CLR) transform
O Hypothesis testing, e.g., Welch's t-test or Wilcoxon rank test

©® Report expected values from statistical tests and effect-size estimate

Bland-Altman Effect
o @
© ©
8 . 8
: 7 . 5 7 .
£ % 2
0 o o . 8 o e°
o o 4
o o
T T T T T T T T
2 0 2 4 6 1 2 3 4

Abundance Dispersion

https://bioconductor.org/packages/release/bioc/vignettes/ALDEx2/inst/doc/ALDEx2_vignette.html
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Summary

® Always challenge your data, think of plausible technical explanation first

"I'm a scientist and | know what constitutes proof. But the reason | call myself by my
childhood name is to remind myself that a scientist must also be absolutely like a
child. If [they] see a thing, [they] must say that [they] see it, whether it was what

[they] thought [they] were going to see or not. See first, think later, then test. But
always see first. Otherwise you will only see what you were expecting. Most scientists
forget that.

— adapted from The Ultimate Hitchhiker's Guide to the Galaxy by Douglas Adams
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PhD course " Bioinformatics analysis of gene expression data (BAGED)

@ Do you have your own bulk or single-cell RNA-seq data of a vertebrate?

® Do you want to learn how to analyze your data yourself?

©® What? 2 to 3 weeks of lectures, tutorials and most importantly student projects
@ Hardware and Software? UCloud, (Galaxy), R, Cytoscape

©® When? BAGED-bulk January 2026; BAGED-single Autumn/Spring 2025/26

@ Sign up early due to limited number of seats
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