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Practicalities

e Every day from 8.15to 15

e R

e Additional software extensions
e Breaks/exercises as we go along
e Lunch roughly at 11.

e Please "read" before classes

Sister course: Advanced Statistical Topics A




Course overview

1. Network analysis (Monday)
2. Bayesian Statistics (Tuesday)

3. Principal component analysis AR,
. BRADLEY EFRON

(PCA) and partial least squares R bsTE
(PLS) (Wednesday) ' COMPUTER
4. Neural networks and dee STATISTIGAN
| P INFERE c A\

learning (Thursday)



https://web.stanford.edu/~hastie/CASI/
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Statistical analysis of networks

Things become less clear on networks:
What is the sample size?
How do we measure features? What is a feature?

How would we determine if a network was "random” or follows a
particular model?

How do we define clusters / subgraphs / communities?




Craphs

Graphs consists of:

e Vertices or nodes, i.e., the
numbers in the graph.

e Edges or connectionsi.e., the
lines between the nodes.

Graphs can be directed or
undirected, and can contain data

on edge or node weights.




Overview

e Descriptive information about graphs
e Statistical models

e Fitting models on networks and statistical inference.

e Finding communities




Summarizing network graphs

Descriptive analysis; this is a standard first (and sometimes only!) step in
characterising networks.

Typical measures include

* Density
e Centrality
e Closeness

e Betweenness




Craph density

The graph density of a graph G = (V, E') with v nodes and e edges is the
ratio of edges to the number of potential edges:

v(v—1)/2

density =

A graph can be represented by its adjacency matrix

4, — {1 if (s,t) € E

0 otherwise




Centrality measures

Find important/central nodes in a graph. However, centrality is not
uniquely defined.

The degree of a node v is its number of edges (arrows going in).
The average degree of network is the average of all node degrees.

The degree distribution is the relative frequency of all degrees in the
network.

The degree summaries give simple characteristics of the network but tell
very little about its specific structure.




Clustering coefficients

The local clustering coefficient for node v is the proportion of neighbours
that are neighbours themselves. Describes the local density of a graph.

Zs,t Ay, Qy,t Qs t 2 links between neighbours

L = =
CC(U) Zs ¢ Ay, sQy t degreev(degreev B 1)

(with o/o =0)

The average clustering coefficient is the average of LC'C(v) over all nodes V.

O = star, 1 =clique




Global clustering

The global clustering coefficient is defined as

number of closed triplet

GCC =

number of all triplets

The LCC measures how locally dense the network is.

The GCC measures globally denseness.




Distance

The distance between u, v is the shortest path between them if any such
exists. Not necessarily unique.

The average shortest path is

_ 1
{ = l(u,v
vivoi 2. Hw)

u,veV u#v

Describes how globally connected a graph is.

Unconnected groups make the average shortest path undefined as the
distance is infinity. 15




Connectedness

The betweenness of an edge e is the proportion of shortest paths between
any two nodes that pass through edge e.

The betweenness of a node v is the proportion of shortest paths between any
two nodes that pass through node v.

The connectivity of a graph is the smallest number of edges to remove that

results in a disconnected graph




Network models




Network generating models

If we want to judge if a network summary is "unusual” then we need to
specify how a random network (from some model) would look.

Randomness in a network can be due to construction of the network
(when is an edge an edge?), selection/sampling, errors in data, dynamic
changes (if two people are related today they may not be related

tomorrow), ...




Bernoulli (Erdos-Renyi) random graphs

The nodeset V is given with |V| = N.

An edge between two nodes is present with probability p independently
of all other edges. The expected number of edges is

N(N —1)
2

D

and the expected clustering coefficient is

p




In practice

In real networks we often see results from small world phenomenon:

e Ahigher clustering than anticipated by the Bernoulli RG
e Ashorter average shortest path than expected

e More nodes with higher degrees than expected (heavy tails)




The Watts-Strogatz

Arrange the |V| nodes on a circle. Hard-wire each node to its k nearest
neighbours on each side ( k£ small).

Introduce random shortcuts between nodes which are not hard-wired.
Chosen randomly all with same probability.

Average shortest distance is of order |V|. When shortcuts are introduced
then the ASD is log(|V]).

Spread of epidemic.




Scale-free random graphs

Based on empirical observations by Barabasi and Albert. Resembles a
power-law

P(random node has degree = k) ~ C x k™

"Rich gets richer"-model. Cannot (directly) produce any triangles.




The stochastic block model

Consider that nodes each belong to one of L classes. Edges are
constructed independently, such that the probability for an edge
depends only on the combined types of the two connecting nodes.

Quite flexible, but requires many assumptions.




Your network model should depend ...

... on the application.

Like any statistical model it should be tailored to the problem at hand.

Base the model on the context.




Fitting network models and testing hypotheses




Bernoulli random graphs

In Bernoulli random graph with |V| nodes an edge is present with
probability p independently of all other edges.

1B
;)

This approach also works for stochastic block models (when the types are
known) or for Watts-Strogatz (when the number of neighbours are

D =

known).




Scale-free models

If P(random node has degree = k) ~ C x k™7 then

log(P(random node has degree = k)) ~ log(C') — v x log(k)
Plot log relative frequency of degree k against log(k)

Alternatively (more stable),

log(P(random node has degree > k)) ~ C' — (v — 1) x log(k)




Simulation using MCMC approaches (e.g., Stoc.
block)

Lives on graphs and "moves" consist of

e adding or deleting edges, or
e adding or reducing types.

Not clear when the Markov chain has reached its stationary distribution.

Providing rules to modify edges or change node types requires (prior)

assumptions about the shape of model to use for this!




Statistical tests

Study the asymptotic distribution of summary statistics by comparing
the observed summary to how it would look under an assumed model.

E.g., degree, clustering coefficient, average shortest distance, ...

Except in Bernoulli random graphs, the theoretical distribution of
summary statistics is usually not easy to derive.




Parametric bootstrap of model

Simulate samples under the null hypothesis (model) from a parametric
model with estimated parameters.

If we have a complex model then we might condition on a summary and
focus on another summary:

For example, draw many random networks with same degree sequence.
Count the simulated datasets where the shortest average path is as
extreme as our observed shortest average path.

Note: Dependence between summaries might prove a problem.




Parametric bootstrapping algorithm

1. Compute the measure of interest in actual network, T'*

2. Fit the parameters of the network (if possible)

3. Simulate from network model or simulate from conditional random
graph given a summary and compute the measure of interest for the
sampled graph, T'°

4. Do 3 B times

5. Count the simulated measures larger (or smaller) than T*, m

6. Compute a p-value (check direction of statistic):

m
B+1

31




Communities




Community detection

Essentially the same as standard clustering.

Abundance of community detection methods

BEWARE of clustering
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The Girvan-Newman approach

1. Calculate betweenness of all
edges in the network.

2. Remove the edge with highest
betweenness. In case of ties
either choose one at random or

remove all
3. Repeat until no edges remain




How many communities?

The modularity is defined as

- deg(¢)deg(j) s
Q\E\ Z g M=)

where A is the adjacency matrix, c; is the community of node z.

() = O indicates the community is no stronger than expected by random

deg(i)deg(;) is roughly the probability that there is an

shuftling since

2| E|
edge between ¢ and j.




Communities for the stochastic block model

Nodes with same type can be considered to be of the same community.
Different types can be aggregated into larger communities.

If the number of types is known but not the exact class for each node then
partial or exact recovery might be possible.

(Classification problem - requires that there is detectable differences in
the proportion of groups and the edge probabilities)




Potential problems (with no easy solution)

If there is uncertainty in the determination of edge status (i.e.,
presence/absence) then that uncertainty propagates through the any

calculations on the network.

Very little work addressing this

e Characterization of propagation of errors from networks to

summaries
e Adjusting for errors (improved estimators)




Sampling from (very large) networks

What is the sample size?

When we sample from a network the sampled network might not be of
the same type as the original network.

How to sample:

e Random sample of nodes and their corresponding edges.
e Snowball sampling. Sample 1 node (with edges), follow edges to

neighbours, ...




