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Today’s program

L1 What is machine learning and what can it teach us
about prostate cancer?

E1 Make your first (stupid) machine learning models

L2 A slightly smarter machine: Using logistic regression

E2 Training with logistic regression

L3 Introduction to neural networks

Lunch (' 11.15-12.00)

L3 Introduction to neural networks (continued)

E3 Train neural networks

L4 Introduction to deep learning: More tools for NNs

E4 Train more neural networks with your brand new tools

L5 What can you do next?
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A few pointers for today
I More workshop than "classical" course: Focus on you trying

stuff out in practice, not on theory.
I A lot of exercises - decide for yourself if you want to focus on a

few or go quicker through more.

I You will be working in R, sometimes with semi-advanced
code.
I I don’t expect you to be programmers!
I Try to see if you can make sense of the code.
I Ask questions!

I We will work on a difficult real life classification problem
I This is not a textbook example.
I It may be challenging to get anywhere.
I I cannot promise you that you will be making very clever

machines today.
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Our problem for today: Predict prostate cancer patient
survival

I Data from comparison arms from 3 phase III clinical trials for
metastatic castrate resistant prostate cancer patients.

I A total of 1495 patients with 95 measured variables.

I Goal: Predict whether a patient dies within 2 years.



Prostate cancer DREAM challenge



A prediction competition

Two subchallenges:

1. Predicting whether a patient is registered as "dead" within 2
years of the study (tricky)

2. Predicting whether a patient’s treatment is discontinued within
3 months of the study due to adverse effects (Subchallenge 2
outcome) (trickier)
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Results from the DREAM challenges



Supervised learning vs. unsupervised learning



Supervised learning vs. unsupervised learning



Supervised machine learning workflow
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Supervised learning: evaluating performance

I Performance can be evaluated e.g. by looking at the accuracy :

#Y from test data is equal to Ŷ
#observations in test data = 1

ntest

ntest∑
i=1

1(Yi =Ŷi )

I Note: This is very different from "classical" statistics. There is
a true answer and we know it!



Supervised learning: 2 rules for building your machine

1. Do not touch the test data when training the machine

2. Do not touch the test data when training the machine
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Machine learning 101



Machine learning for prostate cancer survival

I Goal: Given data on a new patient you haven’t seen before,
predict whether he will die within 2 years.

I We will measure performance primarily in terms of accuracy.
The best machine is the one that achieves the highest
accuracy on the test data.



Our first machine: George Sr.



A digital machine: George Jr.

george <- function(data_x, y) {
#Learning from data would have happened here
#if George had bothered doing it

predictFunction <- function(newdata) {
#George flips a coin for each observation in "newdata"
#to see if he should return 1 or 0 as their label
ys <- sample(c(1,0), size = nrow(newdata),

prob = c(0.5, 0.5),
replace = TRUE)

return(ys)
}
#return the prediction function
return(predictFunction)

}



Load and look at the mCRPC data

load("./data/andata.rda")

dim(traindata_x)

## [1] 1203 91

dim(testdata_x)

## [1] 292 91

table(traindata_DEATH2YRS)

## traindata_DEATH2YRS
## 0 1
## 769 434



Evaluate George’s performance

#train George
george_predict <- george(traindata_x, traindata_DEATH2YRS)

#predict labels for test data
george_guesses <- george_predict(testdata_x)

#compute accuracy
mean(george_guesses == testdata_DEATH2YRS)

## [1] 0.4965753



More information about the data

I Data from comparison arms from 3 phase III clinical trials for
metastatic castrate resistant prostate cancer patients.

I I have prepared ready to go data (e.g. no missing information):
andata.rda.

I Look in the codebook (codebook_mCRPCdata.pdf) for more
information about the features you can use.

I Note: Categorical variables (ECOG and AGEGRP) are coded as
dummies:

table(ECOG1 = traindata_x$ECOG_1); table(ECOG2 = traindata_x$ECOG_2)

## ECOG1
## 0 1
## 617 586

## ECOG2
## 0 1
## 1148 55



Time to build your first machine!

Go to the course website and find exercise session 1:


