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Partial Least Square (PLS)

PLS is a family of multivariate statistical techniques based on
dimension reduction developed by S. Wold and H. Wold (1966,
1983). It can be seen as a supervised version of PCA.

Predictor matrix:

- n observations

- p variables

X
n Response matrix:

- n observations

- q variables

Y
n

p q



Modelling Aims

Partial Least Square is also a Dimension reduction method with the
two following aims:

▶ Symmetric relationship: analyse the shared information.
▶ Asymmetric relationship: X = predictors, and Y = response.



Modelling Aims

When Y is only one column (univariate case), PLS can be
summarized as

▶ Dimension reduction method: p dimension space⇒ K
dimension space (K << p)

▶ PLS looks the best components the most correlated to the
response variable

▶ The PLS components are linear combinations of the variables

Ck = u1 × SNP1 + u2 × SNP2 + . . . + up × SNPp

▶ It is a supervised approach



Modelling Aims

In more general case (Y multivariate q > 1):

▶ PLS finds pairs of latent (score) vectors ξ = Xu, ω = Yv

ξ = u1 × gene1 + u2 × gene2 + · · · + up × genep

ω = v1 × pheno1 + v2 × pheno2 + · · · + vp × phenoq

▶ Symmetric relationship. Analyse the shared information.
▶ Asymmetric relationship. There is a set of response and

predictor variables that can be used for prediction.



Objective function:

max
||uh ||=1,||vh ||=1

cov(Xhuh ,Yhvh) h = 1 . . .H

Principle:

▶ Iterative procedure 7→ orthogonal component (latent variable
ξh = Xhuh).

▶ successive local regressions on the latent variables.

▶ X and Y are successively deflated.



Univariate case Y ∈ ℜn



Univariate case Y ∈ ℜn

Univariate case Y ∈ ℜn: step 1 :max||u||=1 cov(Xu,Y )

cov(Xu,Y ) = (Xu)T Y

= < u,XT Y >= ||XT Y ||cos(u,XT Y )

↪→ u = XT Y
||XT Y ||

▶ Step 2: find a new linear combination no correlated to ξ = Xu
which explain the residuals Y − dξ where d is the regression of
Y on ξ = Xu

▶ Deflated step: Y ← Y − dξ and X ← X − ξcT where c is the
regression of X on ξ = Xu;

▶ the columns of the new X are orthogonal (no correlated) to Xu.



Partial Least Squares: regression mode (multivariate
case: Y (n × q))
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For each iteration h, h = 1..H, decompose X and Y into:

1. Loadings vectors uh and vh , p- and q- dimensional vectors

2. Latent variables ξh and ωh , n-dimensional vectors

3. Regression of Xh−1 and Yh−1 on ξh reg. coeff. ch and eh

4. Residual matrices: deflation step of Xh−1 and Yh−1



Algorithm: regression mode
Objective function:

max
||uh ||=1,||vh ||=1

cov(Xhuh ,Yhvh) h = 1 . . .H

Start: set w to the first column of Y

1. u = XT w
wT w , scale u to one. u is the loading vector associated to X

2. ξ = Xu is the latent variable associated to X

3. v = YT ξ

ξT ξ
, scale v to one. v is the loading vector associated to Y

4. w = Yv is the latent variable associated to Y .

5. If convergence then 6 else 1

6. c = XT ξ

ξT ξ
, e = YT ξ

ξT ξ
are the partial regression coefficients from

the regression of X (Y ) onto ξ.

7. Deflation step: Compute the residual matrices X ← X − ξcT

and Y ← Y − ξeT



PLS family

PLS = Partial Least Squares or Projection to Latent Structures $ $\
Four main methods coexist in the literature:

(i) Partial Least Squares Correlation (PLSC) also called PLS-SVD;

(ii) PLS in mode A (PLS-W2A, for Wold’s Two-Block, Mode A PLS);

(iii) PLS in mode B (PLS-W2B) also called Canonical Correlation
Analysis (CCA);

(iv) Partial Least Squares Regression (PLSR, or PLS2).

▶ (i),(ii) and (iii) are symmetric while (iv) is asymmetric.

▶ Different objective functions to optimise.

▶ Good news: all use the singular value decomposition (SVD).



PLS connected to Singular Value Decomposition (SVD)

Let a matrix M : p × q of rank r :

M = U∆VT =
r∑

l=1

δlulvT
l ,

▶ U = (ul) : p × p and V = (vl) : q × q are two orthogonal
matrices which contain the normalised left (resp. right)
singular vectors

▶ ∆ = diag(δ1, . . . , δr , 0, . . . , 0): the ordered singular values
δ1 ⩾ δ2 ⩾ · · · ⩾ δr > 0.



Connexion between SVD and maximum covariance
We were able to describe the optimization problem of the four
PLS methods as:

(u∗, v∗) = argmax
∥u∥2=∥v∥2=1

Cov(Xh−1u,Yh−1v), h = 1, . . . ,H

Matrices Xh and Yh are obtained recursively from Xh−1 and
Yh−1.

The four methods differ by the deflation process, chosen so that the
above scores or weight vectors satisfy given constraints.

The solution at step h is obtained by computing only the first triplet
(δ1, u1, v1) of singular elements of the SVD of Mh−1 = XT

h−1Yh−1:

(u∗, v∗) = (u1, v1)



PLS in practice: the nutrimouse study

The ‘nutrimouse‘ study contains the expression levels of genes
potentially involved in nutritional problems and the
concentrations of hepatic fatty acids for forty mice. The data
sets come from a nutrigenomic study in the mouse, in which the
effects of five regimens with contrasted fatty acid compositions
on liver lipids and hepatic gene expression in mice were
considered.



PLS in practice: the nutrimouse study

Two sets of variables were measured on 40 mice:

▶ gene: the expression levels of 120 genes measured in liver
cells, selected among (among about 30,000) as potentially
relevant in the context of the nutrition study.

▶ lipid: concentration (in percentage) of 21 hepatic fatty acids
measured by gas chromatography.

▶ diet: a 5-level factor. Oils used for experimental diets
preparation were corn and colza oils (50/50) for a reference
diet (REF), hydrogenated coconut oil for a saturated fatty acid
diet (COC), sunflower oil for an Omega6 fatty acid-rich diet
(SUN), linseed oil for an Omega3-rich diet (LIN) and
corn/colza/enriched fish oils for the FISH diet (43/43/14).

▶ genotype 2-levels factor indicating either wild-type (WT) and
PPARα -/- (PPAR).



PLS in practice: the nutrimouse study

To illustrate PLS, we will integrate the gene expression levels (gene)
with the concentrations of hepatic fatty acids (lipid).



Set up the data

We first set up the data as X expression matrix and Y as the lipid
abundance matrix. We also check that the dimensions are correct
and match:

library(mixOmics)
data(nutrimouse)
X <- nutrimouse$gene
Y <- nutrimouse$lipid
dim(X); dim(Y)

[1] 40 120

[1] 40 21



Quick start

MyResult.pls <- pls(X,Y, ncomp=10)
plotIndiv(MyResult.pls)

plotVar(MyResult.pls)

If you were to run pls with minimal code, you would be using the
following default values:

▶ ncomp = 2: the first two PLS components are calculated and
are used for graphical outputs;

▶ scale = TRUE: data are scaled (variance = 1, strongly advised
here);

▶ mode = "regression": by default a PLS regression mode
should be used.



Plot the samples
plotIndiv(MyResult.pls)
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Plot the variables
plotVar(MyResult.pls)
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Customize sample plots

plotIndiv(MyResult.pls, group = nutrimouse$genotype,
rep.space = "XY-variate", legend = TRUE,
legend.title = 'Genotype',
ind.names = nutrimouse$diet,
title = 'Nutrimouse: PLS')
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Customize sample plots

plotIndiv(MyResult.pls, group=nutrimouse$diet,
pch = nutrimouse$genotype,
rep.space = "XY-variate", legend = TRUE,
legend.title = 'Diet', legend.title.pch = 'Genotype',
ind.names = FALSE,
title = 'Nutrimouse: PLS')
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Customize variable plots
plotVar(MyResult.pls, cex=c(3,2), legend = TRUE)
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coordinates <- plotVar(MyResult.pls, plot = FALSE)



Customize variable plots

In this example, the figure is difficult to interpret and we would prefer
to use a sparse vesrion of PLS to selecet the most important
variable.

A cut-off can be set to display only the variables that mostly
contribute to the definition of each component. Those variables
should be located towards the circle of radius 1, far from the centre.

plotVar(MyResult.pls, cutoff=0.5)

In this particular case, no variable selection was performed. Only
the display was altered to show a subset of variables.



Variable Importance in the Projection (VIP)

Variable importance in projection (VIP) coefficients reflect the relative importance
of each X variable for each X variate in the prediction model.

my.vip <- sort(vip(MyResult.pls)[,1],decreasing = TRUE)
barplot(my.vip[1:50],
beside = FALSE,
ylim = c(0, max(my.vip)), legend = rownames(my.vip)[1:50],
main = "Variable Importance in the Projection", font.main = 4)
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Loading plots

The loading plots help visualise the coefficients assigned to each selected variable
on each component:

plotLoadings(MyResult.pls, comp = 1, size.name = rel(0.5))
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Tuning parameters and numerical outputs

▶ choose the number of components to retain ncomp.

▶ perf function and repeated k-fold cross-validation to calculate the Q2

criterion used in the SIMCA-P software.

▶ The rule of thumbs is that a PLS component should be included in
the model if its value is ⩽ 0.0975. Here we use 5-fold CV repeated 10
times.

▶ We run a PLS model with a sufficient number of components first,
then run perf on the object.

MyResult.pls <- pls(X,Y, ncomp = 6)
set.seed(30) # for reproducbility
perf.pls <- perf(MyResult.pls, validation = "Mfold", folds = 5,

progressBar = FALSE, nrepeat = 10)



Q2

plot(perf.pls, criterion = 'Q2.total')
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Reminder of Cross-Validation

▶ One idea is to split the data set into two fractions, then use one
portion to fit the model and the other to evaluate how well the
estimated modelpredicted the observations in the second
portion.

▶ The problem with this solution is that we rarely have so much
data that we can freely part with half of it solely for the purpose
of choosing tuning parameters.

▶ To finesse this problem, cross-validation splits the data into K
folds, fits the data on K − 1 of the folds, and evaluates risk on
the fold that was left out.



K-fold cross validation

Let k : 1, . . . ,N → 1, . . . ,K the function indicating the partition to
which observation i is allocated:

CV =
1
n

n∑
i=1

(yi − f̂−k (i)(X i))2

where f̂−k (i) is the prediction of the subject i based on a model fitted
with the k (i)th part of the data removed.



M-K-fold cross validation

Let k : 1, . . . ,N → 1, . . . ,K the function indicating the partition to
which observation i is allocated:

CV =
1
M

∑1n
n∑

i=1

(yi − f̂−k (i)(X i))2


where f̂−k (i) is the prediction of the subject i based on a model fitted
with the k (i)th part of the data removed. \end{frame}



Cross-validation: Leave One Out (loo)

▶ Ŷi is the prediction of the i-th observation obtained with the
model fitted on all the observation.

▶ Ŷ (−i)
i is the prediction of the i-th observation obtained with the

model fitted on all the observation except the i-th observation.

The cross-validation approach compares predictions Ŷ (−i)
i to

observations Yi .



Choice of the number of latent variables H using Q2
H

Determine Ĥ by cross-validation

For each H = 1 . . . n:

1. Evaluate ŶH
i and ŶH(−i)

i

2. Evaluate Residual Sum of Squares : RSSH =
n∑

i=1

(
Yi − ŶH

i

)2
3. Evaluate PRediction Error Sum of Squares :

PRESSH =
n∑

i=1

(
Yi − ŶH(−i)

i

)2
4. Evaluate Q2

H = 1 −
PRESSH

RSSH−1



Take Home Message: PLS

- Dimension Reduction approach for 2 blocs of Data

- Supervised method

- Finds successive pairs of latent (score) vector which are most
correlated

- Symmetric relationship. Analyse the shared information.

-Asymmetric relationship. There is a set of response and
predictor variables that can be used for prediction

Difficult to interpret latent variables when there are too many
variables.

How to make variable selection with PLS ?
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