Introduction to PCA

B. Liquet

Goal of Integrative Analysis:

Wikipedia. Data integration “involves combining data residing in
different sources and providing users with a unified view of these
data. This process becomes significant in a variety of situations,
which include both commercial and scientific”.

System Biology. Integrative Analysis: Analysis of heterogeneous
types of data from inter-platform technologies.

Goal. Combine multiple types of data:

» Contribute to a better understanding of biological mechanism.
> Have the potential to improve the diagnosis and treatments of
complex diseases.

Example: Data definition

p q

X Y

- n observations - n observations
- p variables - q variables

> “Omics.”” Y matrix: gene expression, X matrix: SNP (single
nucleotide polymorphism). Many others such as proteomic,
metabolomic data.

> “neuroimaging’’. Y matrix: behavioral variables, X matrix: brain
activity (e.g., EEG, fMRI, NIRS)

> “neuroimaging genetics.”” Y matrix: fMRI (Fusion of functional
magnetic resonance imaging), X matrix: SNP

> “Ecology/Environment.”” Y matrix: Water quality variables , X
matrix: Landscape variables

Questions

X Y

- n observations - n observations
- p variables - q variables

Some possible questions:

» How to investigate the relation of these two blocks of Data?
> How to dentify which of the p variables in X (OMICs data) are

associated with the outcome Y (disease status or correlated
continuous marker)

» Integrative Omics Analysis: Can we identify a subset of
correlated genes and proteins?

Constraints

» The n < p situation:
> More predictors than observations
= numerically intractable statistical inferences

> Data from multiple source.

Low-Dimensional Versus High-Dimensional

> The data set that you used to analyse in traditional statistics
course is low-dimensional: n >> p

> Lots of the data sets coming out of modern biological
techniques are high-dimensional: n ~ p or n << p.

> This poses statistical challenges! For example Linear model no
longer applies.

Low Dimensional

High Dimensional

Dimension Reduction

Dimension Reduction methods is a popular approach to solve the
high dimensional situation (p >> n).

Dimension reduction techniques summarize X into a lower
dimension matrix.

Why Dimension Reduction?

> Some features may be irrelevant
> We want to visualize high dimensional data

» High dimensional data often have high degrees of redundancy
(correlation among features).

Dimension Reduction enables us to:

» Map the data into a new low-dimensional space, where
important characteristics of the data are preserved.

» The new space often gives a (linear or non-linear)
transformation of the original data.

> Visualization and analysis (clustering/prediction/...) is then
performed in the new space.

Supervised Learning or Unsurvised Leraning ?

Supervised Learning

Unupervised Learning

> no response variable

> In biological applications, often p >> n.

Unsupervised Learning Examples

> Do genes/samples in microarray expression data form
interesting groups?

» Can individuals’ SNP profiles be used to learn about their
ethnic/racial backgrounds?

> Can we find cancer subtypes based on gene/metabolic
expression patterns?

> What's the best way to visualize a high dimensional genomic
data?

> How to find "interesting patterns” in the data?

Principal Component Analysis

Principal Component Analysis, or PCA, is a well-known and
widely used technique applicable to a wide variety of
applications such as dimensionality reduction, data
compression, feature extraction, and visualization.

The basic idea is to project a dataset from many correlated
coordinates onto fewer uncorrelated coordinates called principal
components while still retaining most of the variability present in
the data.

As an example, principal component analysis is commonly
performed to account for population stratification in genome
wide association study.

Definition: Principal Component Analysis (PCA)

» Data: n observations living in a p-dimensional space.

» Not all p dimensions are equally useful, especially when
p >>n.

> Many are either completely redundant (correlated features) or
uninformative (noise features).

> Need low-dimensional representation of the variables that
captures most of the "information" in the data.

» To maximize the information retained, we need to minimize the
redundancy, and to do this, we look for low-dimensional
representations that capture most of the variation in the data.

PCA: The main Idea

What is a good 1-dim representation of the data?

N o

X2

-1

-2
|

X4

{ Use a linear combination of the variables; i.e. a weighted average of the

variables.
Ci = WiX1 + WoXo

PCA: The main Idea

What is a good 1-dim representation of the data?

o — o

X2

-1

X4

{ Use a linear combination of the variables; i.e. a weighted average of the

variables.
Ci = WiX1 + WoXo

} { What is a good choice for the weights wy; and w»? }

The Criterion for Principal Components

In PCA, we try to find the direction with maximum variance

X2

-

-2
1

{ Formally, we seek the vector of weights v = (wy, wz)T using the criterion

max Var(Xv)
lIvil=1

The 1-Dimensional PCA Solution

The interesting direction according to the PCA criterion is the one
that captures the majority of the variance in the data.

X2

The 2-Dimensional PCA

» But, what if we need another direction.

> A systematic way to find additional principal components
(PC’s), is to choose subsequent linear combinations
orthogonal/perpendicular to previous ones.

» This means that we want to choose v to be orthogonal to w, but
to explain the majority of variability in the data.

> In the case of 2-dimensional data, there is only one choice!!
This is always the case for the last PC.

> For p > 2, there are many orthogonal vectors to choose from,
and we need to find the one that explains the maximum
variation in the data, and is orthogonal to the first one.

The Full PCA Solution for 2 Dimensions

What is a good 1-dim representation of the data?

X2

PCA: Summary
Seek the best directions in the data that account for most of the
variability

— principal components: artificial variables that are linear
combinations of the original variables:

C= X v
(n) (nxp) (p)

» cis a linear combination of the elements of X having
maximal variance

> v is called the associated loading vector

> For example, we get the first principal component with max.
variance
Ci=WiX1+...+WpXp

where vy = (wy,...,wp)T.

PCA: Summary

» PCA = finds units vectors vy, ..., v, that maximise the
variance Xv under the constraint that v;,¢ is orthogonal to
Vi,..., Vi

» Reduction dimension:
p variables = r new variables Xvi, ..., Xv, called
Principal Components

The new PCs form a vectorial subspace of dimension < p
> Project the data on these new axes.

— approximate representation of the data points in a lower
dimensional space

» The first few PCs account for most of the variation in all the
original variables

Cons:

> Interpretation difficult with very large number of variables

» Unsupervised approach

Objective function for PCA

Objective function:

max var(XpVp), h=1...H
[Ivhll=1

Several ways of solving PCA:
1. Eigenvalue problem: Sv = Av; ¢ = Xv
S = variance covariance matrix or correlation matrix if X is scaled

2. Singular Value Decomposition (SVD):
X = UDV’T

where the columns of U(nx r) and V (p X r) are
orthonormal; D = diag[di, ..., d;] such that

di > do > ... > d; > 0 are the square root of the
eigenvalue of X7 X.

Solution based on SVD Decomposition

- The column of C = UD are the principal component;
- The columns of V are the corresponding loading.

- The variance of a principal component ¢4 is equal to its
associated eigenvalue A;.

- The obtained eigenvalues A, are decreasing.

Singular Value Decomposition (SVD)

Singular Value Decomposition, or SVD, is a computational method
often employed to calculate principal components for a dataset.
Using SVD to perform PCA is efficient and numerically robust. (see
https://intoli.com/blog/pca-and-svd/).

Let a matrix M : p x q of rank r:

r
M= UAVT = Z sy,
I=1

» U= (u):pxpandV =(v):qgx g are two orthogonal
matrices which contain the normalised left (resp. right)
singular vectors

> A = diag(d1,...,9r,0,...,0): the ordered singular values
012022---20r>0.

https://intoli.com/blog/pca-and-svd/

Relation of PCA and SVD

> Let the data matrix X be of n X p size, where n is the number of
samples and p is the number of variables.

> Let us assume that it is centered, i.e. column means have been
subtracted and are now equal to zero.

> Then the p x p covariance matrix C is given by
C = XTX/(n - 1). ltis a symmetric matrix and so it can be
diagonalized:

C=VLVT,

where V is a matrix of eigenvectors (each column is an
eigenvector) and L is a diagonal matrix with eigenvalues A; in
the decreasing order on the diagonal.

Relation of PCA and SVD

> The eigenvectors are called principal axes or principal
directions of the data.

> Projections of the data on the principal axes are called principal
components, also known as PC scores; these can be seen as
new, transformed, variables.

» The j-th principal component is given by j-th column of XV. The
coordinates of the i-th data point in the new PC space are
given by the i-th row of XV.

Relation of PCA and SVD

» if we now perform singular value decomposition of X, we obtain
a decomposition

X =UAVT,
From here one can easily see that

A2

VT
n-1 "~

C=VATUTUAVT/(n-1)=V

meaning that right singular vectors V are principal directions and
that singular values are related to the eigenvalues of covariance
matrix via A; = s?/(n - 1).

Principal components are given by XV = UAVTV = UA.

[llustration PCA: GWAS

The dataset comes from the R package bigstatr . It is a subset of
a Genome Wide Asssociation study.

The variables are Single Nucleotide Polymorphism (SNPs)
coded 0,1 amd 2 represented the number of rare allele at
different locus

(https://ghr.nlm.nih.gov/primer/genomicresearch/snp).

Principal Components Analysis (PCA) is a popular tool that has
been used to infer population structure in genetic data for several
decades.

https://ghr.nlm.nih.gov/primer/genomicresearch/snp

[llustration PCA: R code

library(bigstatsr)
set.seed(1)

X <- big_attachExtdata()
n <- nrow(X)
X[1:2,1:3]

(.11 [,2] [,3]
[1,] 2 2 0
[2,1] 12 1

dim(X)

[1] 517 4542

[llustration PCA: R code

We only use only half of the data

ind <- sort(sample(n, n/2))

X.select <- X[ind,]

X.select <- as_FBM(X.select)

test <- big_SVD(X.select, fun.scaling = big_scale())#,
#ind.row = ind)

Projection

we project the sample on a lower dimensional space to see any

structure

plot(test$u)

o
o © o
o
° e, @8 o
— - o O &
o 00 ® (5%9 ° 2%
b0 0 2% £
o%f, oo‘ﬁoo
S | o
° o
N
=
&
173 e}
L o o
S o
o g0 o
® OO@O(? 0 o o
o
? Oé’oo Be%p B
O o © o% oo%%
o o
0 @oy o o o °® B oF
< 0009 ° & o o
I R o &l
o
o AV o oo
o o %6 o
o
S’! i o
b T T T T
-0.10 -0.05 0.00 0.05

test$u[,1]

Projection
> A more realistic projection based on the scores

scores <- test$u %*% diag(test$d)
plot(scores[,2]~scores[,1])

o o
o 00
° (]
o o
° °®oo
° 00 ® ‘%} ©00.0
3 00 © %og’(ﬁ%
c%%oo 00
° g 0°P00®
o
= o
o~
g o
5 o °
g . o °
%60 %o @ o
® %S o ° o o
@ O@Oo 8 o 08@0 °
o 2.0 OOOO OO@?O&%)Q
04 % 82888 0% ° 3 5 o
o° oO® ° o %C[p@%o o
o o, o °q 90698 © o
o . o ° % eq
o o
S o
! o
T T T T T T T
-20 -15 -10 -5 0 5 10

scores|, 1]

classical pca

using the classical pca from R

pca <- prcomp(X[ind,], center = TRUE, scale. = TRUE)
same scaling

all.equal(test$center, pca$center)

[1] TRUE

all.equal(test$scale, pca$scale)

[1] TRUE

projecting on new data

projecting on new data

ind2 <- setdiff(rows_along(X), ind)

scores.test2 <- predict(test, X, ind.row = ind2)
plot(scores[,2]~scores[,1])
points(scores.test2[,2]~scores.test2[,1],col="red")

10 15

5
1

scores|, 2]

-10 -5 0

scores|, 1]

PCs as covariates

Using top PCs as covariates corrects for stratification in GWAS. For
example, for case control studies one can use the following model to

detect variants which are related to a disease:

10git(P(Y = 1|SNPj, PC,..., PC20)) = Bo+B1 SNP}‘+’)/1 PCi+.. .+720PC20

SVD as a Compression/Dimension Reduction Tool

We start by reading an image and we perform SVDs on this image.

if (!"jpeg" %in% installed.packages())
install.packages("jpeg")

Read image file into an array with three channels

(Red-Green-Blue, RGB)

liquet <- jpeg::readJPEG("liquet.jpeg™)

r <- liquet[, , 1] ; g <- liquet[, , 2] ; b <- liquet[, , 3]

Performs full SVD of each channel

liquet.r.svd <- svd(r) ; liquet.g.svd <- svd(g) ;

liquet.b.svd <- svd(b)

rgb.svds <- list(liquet.r.svd, liquet.g.svd, liquet.b.svd)

SVD as a Compression/Dimension Reduction Tool

These two functions will be needed to display an image stored in an
RGB array:

Function to display an image stored in an RGB array

plot.image <- function(pic, main = "") {

h <- dim(pic)[1] ; w <- dim(pic)[2]

plot(x = c(®, h), y = c(@, w), type = "n", xlab = ",
ylab = "", main = main)

rasterImage(pic, 0, 0, h, w)

}

Function to compress an image via SVD of each channel

compress.image <- function(rgb.svds, nb.comp) {
nb.comp (number of components) should be less than min(
i.e., 170 here
svd.lower.dim <- lapply(rgb.svds, function(i)
list(d = i$d[1:nb.comp],
u = i$u[, 1:nb.comp],
v = i$v[, 1:nb.comp]))

img <- sapply(svd.lower.dim, function(i) {
img.compressed <- i$u %*% diag(i$d) %*% t(i$v)
}, simplify = 'array')
img[img < 0] <- 0
img[img > 1] <- 1
return(list(img =

}

img, svd.reduced = svd.lower.dim))

plot side-by-side the original and compressed images now.
par(mfrow = c(1, 2))
plot.image(liquet, "Original image™)
p <- 20 ; plot.image(compress.image(rgb.svds, p)$img,
paste("SVD with", p, "components"))

Original image SVD with 20 components

150
|
150
|

100
|
100
|

compression ?

As you can see, with 20 components (over 170 maximum), we can
still recognize Benoit!

How much compression did we achieve with 20 components?

object.size(rgb.svds) # Original image

1740920 bytes

object.size(compress.image(rgb.svds, p)$svd.reduced)

207320 bytes

Compressed image

Case Study: The liver.toxicity study

First, you have to install the R package mixOmics which is now
availaible on Bioconductor

if (!requireNamespace('BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager: :install("mixOmics", version = "3.8")

library(mixOmics)

Case Study: The liver.toxicity study

The liver.toxicity is a list in the package that contains:

>

gene: a data frame with 64 rows and 3116 columns,
corresponding to the expression levels of 3,116 genes
measured on 64 rats.

clinic: a data frame with 64 rows and 10 columns,
corresponding to the measurements of 10 clinical variables on
the same 64 rats.

treatment: data frame with 64 rows and 4 columns, indicating
the treatment information of the 64 rats, such as doses of
acetaminophen and times of necropsy.

gene. ID: a data frame with 3116 rows and 2 columns,
indicating geneBank IDs of the annotated genes.

More details are available at ?1iver.toxicity.

Load the data

We first load the data from the package.

data(liver.toxicity)
X <- liver.toxicity$gene

Quick start

MyResult.pca <- pca(X) # 1 Run the method
plotIndiv(MyResult.pca) # 2 Plot the samples

plotVar (MyResult.pca) # 3 Plot the variables

If you were to run pca with this minimal code, you would be using
the following default values:

» ncomp =2: the first two principal components are calculated
and are used for graphical outputs;

> center = TRUE: data are centred (mean = 0)

> scale = FALSE: data are not scaled. If scale = TRUE
standardizes each variable (variance = 1).

Plot the samples
plotIndiv(MyResult.pca)

)

PC2: 18% expl. var

-5

Plotindiv
D424
D211
D512 IR
e
08896 D405
10228318
D217
. D522 1DS06p505
D210 'ggié D411
D311 D310 D406 D516
D518 1D404
D214 1D220
|
D20
! 1D402
1D202308320 D512
| D513
%ﬁ?g:{ D416 1D421
D319 oars P51
D503 D521 D508
D413
D501 I
D403 487
D509
D419
5 [5 10

PC1: 36% expl. var

Plot the variables
plotVar(MyResult.pca)

Correlation Circle Plot

05

0.0+ -

Component 2

-10 -05 0.0 05 10
Component 1

Customize plots

Here is an example where we include the sample groups
information with the argument group:

plotIndiv(MyResult.pca,
group = liver.toxicity$treatment$Dose.Group,
legend = TRUE)

Plotindiv l
5 D211
uﬁé 538,

o D210 1D316
g D311 D310 Legend
Z o0 ! 220
3 |D£%§g ® 150
o 10202308320
§ 183 1500
(‘:; ID319 2000
O ® 50
a

-5

h 0 5 10

PC1: 36% expl. var

Customize plots: two factors displayed

plotIndiv(MyResult.pca, ind.names = FALSE,

group = liver.toxicity$treatment$Dose.Group,

pch = as.factor(liver.toxicity$treatment$Time.Group),
legend = TRUE, title = 'Liver toxicity: genes, PCA comp
legend.title = 'Dose', legend.title.pch = 'Exposure')

Liver toxicity: genes, PCA comp 1 - 2
5 X X
>¢2§A A
X
5 « 4)_3(A AX
=0
g 9 o
£ o;b% N N
g " 0°
S 8 +
+

5
PC1: 36% expl. var

Dose
® 150
® 1500
2000
® 50

Exposure
A 18
+ 2
X 48
O s

second PCA with 3 components:

3)
c(1,3), legend = TRUE,

MyResult.pca2 <- pca(X, ncomp

plotIndiv(MyResult.pca2, comp
liver.toxicity$treatment$Time.Group,

group =
title = '"Multidrug transporter, PCA comp 1 - 3')
Multidrug transporter, PCA comp 1 - 3 \
501 D503 I
IDS]M% D506
1D8og /D414 1D505 ID516
=1 D413 D405 D404 |
§ D268 D406 518 Legend
5 oor o e e
E 24
bt 48
& = D416 N
5.0+
5 0 5 10

PC1: 36% expl. var

Here, the 3rd component on the y-axis clearly highlights a time of
exposure effect.

Amount of variance explained and choice of number of

components
MyResult.pca3 <- pca(X, ncomp = 10)

plot(MyResult.pca3)

1 2 3 4 5 6 7 8 9 10

Princinal Components

0.35

0.30
|

0.15 0.25
1 1

Explained Variance

0.10
1

0.05
1

0.00

Other useful plots

We can also have a look at the variable coefficients in each
component with the loading vectors.

a minimal example
plotLoadings (MyResult.pca)

Other useful plots

a customized example to only show the top 100 genes

and their gene name

plotLoadings(MyResult.pca, ndisplay = 100,
name.var = liver.toxicity$gene.ID[, "geneBank"],
size.name = rel(0.3))

Loadings on comp 1

-0.05 0.00 0.05 0.10

3 dimensions plots

plotIndiv(MyResult.pca2,
group = liver.toxicity$treatment$Dose.Group,
style="3d",legend = TRUE,
title = 'Liver toxicity: genes, PCA comp 1 - 2 -

Take Home Message: PCA

- Dimension Reduction approach
- Unsupervised method

- create uncorrelated artificial variables called principal
components

- The principal components are obtained so that their variance is
maximised

Take Home Message: PCA

- Dimension Reduction approach
- Unsupervised method

- create uncorrelated artificial variables called principal
components

- The principal components are obtained so that their variance is
maximised

Difficult to interpret PC When there are too many variables.
How to make variable selection with PCA ?

