Adv. Stat. Topics A - Missing data

Afternoon session

Anne Helby Petersen



Program outline

12.00-12.50: Imputation and Multiple Imputation using Chained
Equations (MICE)

12.50-14.15: Work with data: Data analysis with missing
information

14.15-14.45: Presentations

14.45-15.00: Further perspectives and more resources
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» Imputation: Fill in missing slots in the data with plausible
values.
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Imputation

o

17

» Imputation: Fill in missing slots in the data with plausible
values.

» Terrible idea... if you do it just once.

» Wonderful idea if you do it multiple times.



Example: Simple missing information setup

» Imagine that we wish to estimate the effect of X on Y,
controlling for Z.

» X suffers from missing information (MCAR). Assume that we
order the observations such that Xi, ..., Xy have missing
information, while Xy1, ..., X;; are fully observed.

» Assume that Y and Z are all fully observed.



Example: Simple missing information setup

» Imagine that we wish to estimate the effect of X on Y,
controlling for Z.

» X suffers from missing information (MCAR). Assume that we
order the observations such that Xi, ..., Xy have missing
information, while Xy1, ..., X;; are fully observed.

» Assume that Y and Z are all fully observed.

> Note: Complete case analysis would produce an unbiased, but
inefficient estimate.



Simulating a small dataset in R



Simulating a small dataset in R

n <- 200

set.seed(1331)

Z <- rnorm(n, sd = 1)

X <- Z + rnorm(n, sd = 1)

Y <- 2%X + Z + rnorm(n, sd = 2)
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X <- Z + rnorm(n, sd = 1)
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true X <- X

true_xmean <- mean(X)
true_xsd <- sd(X)
true_model <- 1m(Y ~ X + Z)
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Simulating a small dataset in R

n <- 200

set.seed(1331)

Z <- rnorm(n, sd = 1)

X <- Z + rnorm(n, sd = 1)

Y <- 2%X + Z + rnorm(n, sd = 2)

true X <- X

true_xmean <- mean(X)
true_xsd <- sd(X)
true_model <- 1m(Y ~ X + Z)

d <- 40
X[1:d] <- NA

X[36:40]

## [1] NA NA NA NA NA
X[41:45]

## [1] -0.9404489 0.7807026 1.9016603 -0.3728711 -0.5331431



A quick overview of the data (no missing info.)

X Y Z
0.3-
0.2- Corr: Corr: ~
0.1- 0.859 0.677
Corr:
=<
0.711
N

5 10 -2-1 0 1 2
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X1, oo Xy



Mean imputation (1/3)

Mean imputation: Insert the mean (or mode) of Xyy1, ..., X, into all
X1, oo Xy

X_meanimp <- X



Mean imputation (1/3)
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Mean imputation: Insert the mean (or mode) of Xyy1, ..., X, into all
X1, oo Xy

X_meanimp <- X
xobs_mean <- mean(X[(d+1):n])
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Mean imputation (1/3)

Mean imputation: Insert the mean (or mode) of Xyy1, ..., X, into all
X1, oo Xy

X_meanimp <- X
xobs_mean <- mean(X[(d+1):n])
X_meanimp[1:d] <- xobs_mean

#Compare mean for full X with mean of mean imputed X
true_xmean; mean(X_meanimp)

## [1] -0.07813252

## [1] -0.1551874



Mean imputation (1/3)

Mean imputation: Insert the mean (or mode) of Xyy1, ..., X, into all
X1, oo Xy

X_meanimp <- X
xobs_mean <- mean(X[(d+1):n])
X_meanimp[1:d] <- xobs_mean

#Compare mean for full X with mean of mean imputed X
true_xmean; mean(X_meanimp)

## [1] -0.07813252

## [1] -0.1551874

#Compare sd for full X with sd of mean imputed X
true_xsd; sd(X_meanimp)

## [1] 1.368721
## [1] 1.240263



Mean imputation (2/3)

Comparing model coefficients:



Mean imputation (2/3)

Comparing model coefficients:

round (summary (true_model)$coefficients,4)

#it Estimate Std. Error t value Pr(>|t])
## (Intercept) -0.0532 0.1392 -0.3822 0.7028
## X 2.0756 0.1382 15.0158 0.0000

## Z 1.0260 0.2000 5.1297  0.0000



Mean imputation (2/3)

Comparing model coefficients:

round (summary (true_model)$coefficients,4)

#it Estimate Std. Error t value Pr(>ltl)
## (Intercept) -0.0532 0.1392 -0.3822 0.7028
## X 2.0756 0.1382 15.0158 0.0000
## Z 1.0260 0.2000 5.1297 0.0000

round (summary (1m(Y ~ X_meanimp + Z))$coefficients,4)

## Estimate Std. Error t value Pr(>ltl)
## (Intercept) 0.0709 0.1623 0.4371 0.6626
## X_meanimp 1.7887 0.1639 10.9102 0.0000

## Z 1.6266 0.2150 7.5675 0.0000



Mean imputation (2/3)

Comparing model coefficients:

round (summary (true_model)$coefficients,4)

#it Estimate Std. Error t value Pr(>ltl)
## (Intercept) -0.0532 0.1392 -0.3822 0.7028
## X 2.0756 0.1382 15.0158 0.0000
## Z 1.0260 0.2000 5.1297 0.0000

round (summary (1m(Y ~ X_meanimp + Z))$coefficients,4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0709 0.1623 0.4371 0.6626
## X_meanimp 1.7887 0.1639 10.9102 0.0000
## Z 1.6266 0.2150 7.5675 0.0000

Conclusion: Don’t do mean imputation!



Mean imputation (3/3)

plot(Y ~ X_meanimp, xlab = "X",
col = c(rep("red", 40), rep("blue", 160)))
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Hot deck imputation (1/3)

Hot deck imputation (simplest version): For each missing value, X, ..., Xy,
pick and insert a random value among the observed values X441, ..., Xs.
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Hot deck imputation (1/3)

Hot deck imputation (simplest version): For each missing value, X, ..., Xy,
pick and insert a random value among the observed values X441, ..., Xs.

X_hdimp <- X
set.seed(13)

X_hdimp[1:d] <- sample(X[(d+1):n], size = d,
replace = TRUE)



Hot deck imputation (1/3)

Hot deck imputation (simplest version): For each missing value, X, ..., Xy,
pick and insert a random value among the observed values X441, ..., Xs.

X_hdimp <- X

set.seed(13)
X_hdimp[1:d] <- sample(X[(d+1):n], size = d,
replace = TRUE)

#Compare mean for full X with mean of mean imputed X
true_xmean; mean(X_hdimp)

## [1] -0.07813252
## [1] -0.2030766



Hot deck imputation (1/3)

Hot deck imputation (simplest version): For each missing value, X, ..., Xy,
pick and insert a random value among the observed values X441, ..., Xs.

X_hdimp <- X

set.seed(13)
X_hdimp[1:d] <- sample(X[(d+1):n], size = d,
replace = TRUE)

#Compare mean for full X with mean of mean imputed X
true_xmean; mean(X_hdimp)
## [1] -0.07813252

## [1] -0.2030766

#Compare sd for full X with sd of mean imputed X
true_xsd; sd(X_hdimp)

## [1] 1.368721
## [1] 1.387267



Hot deck imputation (2/3)

Comparing model coefficients:



Hot deck imputation (2/3)

Comparing model coefficients:

round (summary (true_model)$coefficients,4)

#it Estimate Std. Error t value Pr(>|t])
## (Intercept) -0.0532 0.1392 -0.3822 0.7028
## X 2.0756 0.1382 15.0158 0.0000

## Z 1.0260 0.2000 5.1297  0.0000



Hot deck imputation (2/3)

Comparing model coefficients:

round (summary (true_model)$coefficients,4)

#it Estimate Std. Error t value Pr(>ltl)
## (Intercept) -0.0532 0.1392 -0.3822 0.7028
## X 2.0756 0.1382 15.0158 0.0000
## Z 1.0260 0.2000 5.1297 0.0000

round (summary (Im(Y ~ X_hdimp + Z))$coefficients,4)

## Estimate Std. Error t value Pr(>ltl)
## (Intercept) 0.0484 0.1781 0.2720 0.7859
## X_hdimp 1.2207 0.1492 8.1828 0.0000

## Z 2.1195 0.2188 9.6879  0.0000



Hot deck imputation (2/3)

Comparing model coefficients:

round (summary (true_model)$coefficients,4)

#it Estimate Std. Error t value Pr(>ltl)
## (Intercept) -0.0532 0.1392 -0.3822 0.7028
## X 2.0756 0.1382 15.0158 0.0000
## Z 1.0260 0.2000 5.1297 0.0000

round (summary (Im(Y ~ X_hdimp + Z))$coefficients,4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0484 0.1781 0.2720 0.7859
## X_hdimp 1.2207 0.1492 8.1828 0.0000
## Z 2.1195 0.2188 9.6879 0.0000

Conclusion: Don’t do hot deck imputation!



Hot deck imputation (3/3)

plot (Y ~
col
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X_hdimp, xlab = "X",
= c(rep("red", 40), rep("blue", 160)))




Regression imputation (1/4)

Regression imputation: Fit a regression model for all the observations, e.g.,
Xi=a+p1-Yi+02-Zi+e

for i=d+1,...,n and use this model to predict values for the remaining
X1, o0y Xg-



Regression imputation (1/4)

Regression imputation: Fit a regression model for all the observations, e.g.,
Xi=a+p1-Yi+02-Zi+e

for i=d+1,...,n and use this model to predict values for the remaining
X1, o0y Xg-

obsdata <- data.frame(X = X[(d+1):n],
Y = Y[(d+1):n],
Z = Z[(d+1):nl)
m_regimp <- Im(X ~ Y + Z, obsdata)
X_regimp <- X
X_regimp[1:d] <- predict(m_regimp,
newdata = data.frame(Y
Z

Y[1:4],
Z[1:d4]1))



ression imputation (2/4)

#Compare mean for full X with mean of reg. timputed X
true_xmean; mean(X_regimp)

## [1] -0.07813252

## [1] -0.1177343

#Compare sd for full X with mean of reg. imputed X
true_xsd; sd(X_regimp)

## [1] 1.368721
## [1] 1.352262



Regression imputation (3/4)

round (summary (true_model) $coefficients,4)

#it Estimate Std. Error t value Pr(>ltl)
## (Intercept) -0.0532 0.1392 -0.3822 0.7028
## X 2.0756 0.1382 15.0158 0.0000
## Z 1.0260 0.2000 5.1297 0.0000

round (summary (lm(Y ~ X_regimp + Z))$coefficients,4)

## Estimate Std. Error t value Pr(>ltl)
## (Intercept) 0.0505 0.1256 0.4024 0.6878
## X_regimp 2.2815 0.1264 18.0525 0.0000
## Z 0.8383 0.1807 4.6401 0.0000

Conclusion: Don’t do regression imputation!



Regression imputation (4/4)

plot(Y ~ X_regimp, xlab = "X",
col = c(rep("red", 40), rep("blue", 160)))
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Stochastic regression imputation (1/2)

Stochastic regression imputation: Perform regression imputation, but add
noise to the predictions by sampling from the residuals from the fitted
model.



Stochastic regression imputation (1/2)

Stochastic regression imputation: Perform regression imputation, but add
noise to the predictions by sampling from the residuals from the fitted
model.

X_stocregimp <- X; set.seed(2)
X_stocregimp([1:d] <- X_regimp[1:d] +
sample (residuals(m_regimp), size = d,
replace = TRUE)



Stochastic regression imputation (1/2)

Stochastic regression imputation: Perform regression imputation, but add
noise to the predictions by sampling from the residuals from the fitted
model.
X_stocregimp <- X; set.seed(2)
X_stocregimp([1:d] <- X_regimp[1:d] +
sample (residuals(m_regimp), size = d,
replace = TRUE)

#Estimate from model with full X
round (summary (true_model)$coefficients,4) [2,]

## Estimate Std. Error t value Pr(>ltl)
#i# 2.0756 0.1382 15.0158 0.0000

#Estimate from model with X imputed by stochastic regression
round (summary (Im(Y ~ X_stocregimp + Z))$coefficients,4)[2,]

## Estimate Std. Error t value Pr(>ltl)
#i# 2.0430 0.1309 15.6060 0.0000

Problem: The variance is still underestimated.



Stochastic regression imputation (2/2)

plot(Y ~ X_stocregimp, xlab = "X",
col = c(rep("red", 40), rep("blue", 160)))
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The problem with single imputation strategies

Imputing one value for a missing datum cannot be correct in
general, because we don't know what value to impute with
certainty (if we did, it wouldn't be missing).

— Donald B. Rubin



Multiple imputation

Incomplete data  Imputed data  Analysis results  Pooled result

(Figure 1.6 from van Buuren 2019)



Variance under imputation

Recall: Variance measures the uncertainty of our estimate if we were to
repeat the whole thing.
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Variance under imputation

Recall: Variance measures the uncertainty of our estimate if we were to
repeat the whole thing.

I:I. D...DDD..DD.. Full population
DENEEENRNNERERE  Veencetem:o

sampling

A4
EEENEEEENEED Jaran:

Variance term: U
missing information

NV
HNEEDEEEN Varience . &

Problem: Variance accumulates; we need to use the (uncertain) sample to
estimate the missing data model.



Variance accumulates

WHAT ARE YO LWJORKING ON?

TRYING TO FiX THE PROBLEMS T

CREATED WHEN I TRIED To Fix

THE PROBLEMS I CREATED \JHEN

LTRIEDTO FiX THE PROBLEMS
02 T CREATED LJHEN...

/

http://xkcd.com/1739/


http://xkcd.com/1739/

Total variance (following van Buuren 2019)

It can be shown mathematically that
. 1
Total variance= U+ B+ B - —
m

where m is the number of imputed datasets and

U is the variance due to using a sample rather than the
full population.

B is the extra variance due to there being missing values.

is the extra variance due to having to estimate the
missing data model.

3=

The collective method for obtaining a correct estimate of the total
variance (T) by use of multiple imputations is referred to as Rubin's
rules.



Total variance (following van Buuren 2019)

It can be shown mathematically that

1
Total variance= U+ B+ B- —
m

where m is the number of imputed datasets and

U is the variance due to using a sample rather than the
full population.

B is the extra variance due to there being missing values.

B - = is the extra variance due to having to estimate the

missing data model.

3=

The collective method for obtaining a correct estimate of the total
variance (T) by use of multiple imputations is referred to as Rubin's
rules.

Note: Larger m makes the last term small.



Multiple imputation by chained equations (MICE)

» A specific algorithm (method) for performing data analysis with
missing information.

» Also known as imputation with fully conditional specification

(FCS).

» Specifies imputation models variable-by-variable for each
variable with missing information.

>
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» A specific algorithm (method) for performing data analysis with
missing information.

» Also known as imputation with fully conditional specification
(FCS).
» Specifies imputation models variable-by-variable for each

variable with missing information.

> lteratively updates best guesses to allow all variables (even
those with missing information) to inform the imputation of
the others.



Multiple imputation by chained equations (MICE)

» A specific algorithm (method) for performing data analysis with
missing information.

» Also known as imputation with fully conditional specification

(FCS).

» Specifies imputation models variable-by-variable for each
variable with missing information.

> lteratively updates best guesses to allow all variables
(even those with missing information) to inform the
imputation of the others.



MICE: Sequential guessing (heuristically)

» Assume both X and Z have missing information.

> Let X,ps and Zyps denote the observed values of X and Z,
respectively.



MICE in R

MICE is implemented in the mice package in R:

library(mice)

data <- data.frame(X =X, Y=Y, Z = Z)
set.seed(22)

imps <- mice(data, print = FALSE, m = 10)
fits <- with(imps, Im(Y ~ X + Z))

res <- pool(fits)

summary (res) [, c(1:3,6)]

#it term estimate std.error p.value
## 1 (Intercept) -0.007041764 0.1409787 0.9602335556908
## 2 X 2.072830228 0.1365646 0.0000000000000

## 3 Z 1.030463434 0.1992245 0.0000007903696



MICE in R: Schematic

incomplete data imputed data analysis results pooled results

mice() m with() m pool()
/ N

(Figure 1 from van Buuren & Groothuis-Oudshoorn 2011)



MICE compared with stochastic regression imputation

#Estimate from complete case analysis
round (summary (Im(Y ~ X + Z, data))$coefficients,4)[2,]

## Estimate Std. Error t value Pr(>ltl)
## 2.0358 0.1452 14.0252 0.0000

#Estimate from model with X imputed by stochastic regression
round (summary (Im(Y ~ X_stocregimp + Z))$coefficients,4) [2,]

## Estimate Std. Error t value Pr(>Itl)
#i# 2.0430 0.1309 15.6060 0.0000

#Estimate from mice model (default settings)
round (summary (res) [2, c(2,3,4,6)],4)

##  estimate std.error statistic p.value
## 2 2.0728 0.1366 15.1784 0



Inspecting the variance components from mice

Note: mice delivers estimates of B (b), U (ubar), T (t = std.error?),
as well as A = M (lambda), riv = w (riv) and more:

> summary(res, type = "all")
term m estimate std.error statistic
(Intercept) 10 -0.007041764 0.1409787 -0.04994913
X 10 2.072830228 0.1365646 15.17839086
3 Z 10 1.030463434 0.1992245 ©5.17237362
df p.value riv lambda fmi
141.1110 9.602336e-01 0.1228197 0.1093851 0.1217452
126.6437 0.000000e+00 0.1540145 0.1334598 0.1468278
138.9950 7.903696e-07 0.1271987 0.1128450 0.1253405
ubar b t dfcom
0.01770097 0.001976389 0.01987499 197
0.01616087 0.002262735 0.01864988 197
0.03521153 0.004071692 0.03969039 197

N =

w N =

w N =



Variable level imputation models

Default choices in mice package:

Numerical variables:

Predictive mean matching (pmm). A fusion between regression
imputation and hot deck imputation: Use regression to find a
selection of plausible "donor values”, choose one at random among
them.

Categorical variables (> 2 categories):

Multinomial logistic regression (polyreg). A regression imputation
method.

Categorical variables ( = 2 categories):
Logistic regression (Logreg). A regression imputation method.

Categorical variables (ordered categories):

Ordered logistic regression (polr). A regression imputation method.



Data exercise: Analyze alcodata

— Go to "Exercise: Analyze" on the course website
https://biostatistics.dk /teaching/advtopicsA/notes.html

and work through the questions in small groups.

— Add information to the Google slide show (“analyze”)
corresponding to your dataset - find the link in the exercises.

We will discuss your findings around 14:15.


https://biostatistics.dk/teaching/advtopicsA/notes.html




Back to the Elderly study

Table 3.1: Estimated log odds ratios from the model of controlled consumption status using all full covariate adjustment.
The reported estimates are on log odds ratio scale and they are computed relative to the following reference category:
Treament MET; Gender male; Country Denmark; Age 60; Education none; No partner; Low ADS; Previous treatments
0. The mean log odds of having a controlled alcohol consumption in this reference group is represented by the intercept
estimate. The reported p-values correspond to two-sided z-tests of the null-hypothesis of a zero parameter value.

Estimate Std. error z statistic p-value
Intercept -0.3507 0.3050 -1.1499 0.2502
Treatment: MET+CRA 0.2028 0.1801 1.1260 0.2602
Country: USA 0.0736 0.2327 0.3164 0.7517
Country: Germany -0.0351 0.2522 -0.1392 0.8893
Gender: Female -0.5543 0.1906 -2.9085 0.0036
Age 0.0677 0.0211 3.2038 0.0014
Married or cohabiting: Yes 0.2270 0.1877 1.2094 0.2265
Severity: Intermediate -0.0777 0.2307 -0.3367 0.7363
Severity: Substantial or severe -0.2767 0.4096 -0.6755 0.4994
Education: At most 0.0518 0.2286 0.2268 0.8206
undergraduate degree
Education: Graduate or -0.4463 0.2872 -1.5537 0.1202
post-graduate
Previous treatments: 1-2 0.2655 0.2187 1.2140 0.2247

Previous treatments: 3+ 0.2938 0.3087 0.9517 0.3413




Elderly sensitivity analyses - models

We fitted five additional models:

MiD Missing is drinking approach: Treating all missing observations as
relapsers (non-controlled consumption).

MiCC Missing is CC approach: Treating all missing observations as
controlled consumption.

METiD MET is drinking approach: Treating missing observations for patients
treated with MET as drinking, while missing obsevrations from
MET+CRA-patients are treated as controlled consumption.

METICC MET is CC: Treating missing observations for patients treated with
MET+CRA as drinking, while missing observations from
MET-patients are treated as controlled consumption.

MICE Multiple imputation of missing observation using all variables from
the primary model and controlled consumption information from
previous time points.



Elderly sensitivity analyses - results

-1 0 1
Estimated log odds ratio for MET+CRA relative to MET
<@ Missing and MET Is drinking, missing and MET+CRA I1s GG (METID)  <@= Missing Is controlled consumption (MICC)
Complete case analysls =@ Missing Is drinking (MID)

Missing and MET 1s CC, missing and MET+CRA 1s drinking (METICC) Missing values are imputed using MICE



Further resources (1)

Excellent book by Stef van Buuren (2019)

Flexible Imputation
of Missing Data
SECOND EDITION
Stef van Buuren ) o

https://stefvanbuuren.name/fimd/


https://stefvanbuuren.name/fimd/

Further resources (

Multiple imputation for Cox models:

STATISTICS IN MEDICINE
Statist. Med. 2009; 28:1982-1998

Published online 19 May 2000 in Wiley InterScience
(wwiwinterscience. wiley.com) DOT: 10.1002/sim.3618

Imputing missing covariate values for the Cox model

Tan R. White! * T and Patrick Royston*

'MRC Biostatistics Unir, Institute of Public Health, Robinson Way, Cambridge CB2 OSR, U.K.
2MRC Clinical Trials Unit, Cancer Group, London, UK.

SUMMARY

Multiple imputation is commonly used to impute missing data, and is typically more efficient than
complete cases analysis in regression analysis when covariates have missing values. Imputation may be
performed using a regression model for the incomplete covariates on other covariates and, importantly,
on the outcome. With a survival outcome, it is a common practice to use the event indicator D and the
log of the observed event or censoring time 7 in the imputation model, but the rationale is not clear.

https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.3618


https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.3618

Further resources (3)

Guideline for MICE in practice:
Statistics

Tutorial in Biostatistics

Received 3 September 2009, Accepted 14 July 2010 Published online 30 November 2010 in Wiley Online Library

(wileyonlinelibrary.com) DOL 10.1002/sim 4067

Multiple imputation using chained equations:
Issues and guidance for practice

Ian R. White,**T Patrick Royston® and Angela M. Wood®

Multiple i ion by chained i is a flexible and practical approach to handling missing data. We describe the
principles of the method and show how to impute categorical and quantitative variables, including skewed variables. We give
guidance on how to specify the imputation model and how many imputations are needed. We describe the practical analysis of
multiply imputed data, including model building and model checking. We stress the limitations of the method and discuss the
possible pitfalls. We illustrate the ideas using a data set in mental health, giving Stata code fragments. Copyright © 2010 John
Wiley & Sons, Ltd.

Keywords: missing data; multiple imputation; fully conditional specification

https://onlinelibrary.wiley.com/doi/full /10.1002/sim.4067


https://onlinelibrary.wiley.com/doi/full/10.1002/sim.4067

Further resources (4)

Multiple imputation with non-linear relationships:

Article

STATISTICAL METWOUS IN MEDICAL RESEARCH

Statistical Methods in Medical Research

2015, Vol. 24(4) 462487,
. . . . 5 The Authors Een
Multiple imputation of covariates earie o

Reprints and permissions:

by fully conditional specification: o s
. smm.sagepub.com
Accommodating the ©SAGE

substantive model

Jonathan W Bartlett,' Shaun R Seaman,’
lan R White? and James R Carpenter'? for the Alzheimer’s
Disease Neuroimaging Initiative*

Abstract

Missing covariate data occur in ep i ical and clinical research, and are often dealt with
using multiple imputation. Imputation of partially observed covariates is complicated if the substantive
model is non-linear (e.g. Cox proportional hazards model), or contains non-linear (e.g. squared) or
interaction terms, and standard software impl i of multiple imp may impute
covariates from models that are incompatible with such substantive models. We show how imputation
by fully conditional specification, a popular approach for performing multiple imputation, can be modified

https://doi.org/10.1177/0962280214521348


https://doi.org/10.1177/0962280214521348

Further resources (5)

Website with a very thorough collection of material on missing data,
emphasis on tools in R:

&« C @ rmisstastic.netlify.com/bibliography/ w

® u ¢ o

@ ggdag M Stateof-thea.. (J Forensicscien... () datamaid W BiostatBib » | Bm Other bookmarks

Home Workflows Lectures Bibliography R packages Data

People News & links Contact & Contribute

R-Vmiss-rtastri

\ e

C

On this platform we attempt to give you an overview of

main references on missing values. We do not claim to About
gather all available references on the subject but rather This website
to offer a peak into different fields of active research on is proudly
handling missing values, allowing for an introductory sponsored by
reading as well as a starting point for further R Consortium
bibliographical research. and

https://rmisstastic.netlify.app/


https://rmisstastic.netlify.app/

Comments/suggestions for this course day are very much welcome at
ahpe@sund.ku.dk
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