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TPC in practice

We'll now dive into a few scattered topics regarding TPC in
practice:

e Edge retention: What happens when « decreases?
® What type of temporal information is most useful?

® How does TPC compare to traditional approaches for
constructing DAGs?

® What happens if there is unobserved confounding?
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Edge retention: TPC applied to simulated data
n = 200 in each simulated dataset, b = 100 repetitions.
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a=0.1
Black edge: True edge. Gray edge: Spurious edge. Percentage: Percentage of @
simulations that included this edge. [ ]
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Edge retention: TPC applied to simulated data
n = 200 in each simulated dataset, b = 100 repetitions.
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Edge retention: TPC applied to simulated data
n = 200 in each simulated dataset, b = 100 repetitions.
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Black edge: True edge. Gray edge: Spurious edge. Percentage: Percentage of
simulations that included this edge.
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Edge retention in application (Petersen, Osler &
Ekstrgm 2021)
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Edge retention in application (Petersen, Osler &
Ekstrgm 2021)
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Edge retention in application (Petersen, Osler &
Ekstrgm 2021)
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Edge retention in application (Petersen, Osler &
Ekstrgm 2021)
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Edge retention in application (Petersen, Osler &
Ekstrgm 2021)
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Edge retention in application (Petersen, Osler &

Ekstrgm 2021)

« diotal  dhew  dremoved  Retention (%)
102 61

103 47 0 14 100.00
1074 39 0 8 100.00
105 37 0 2 100.00
10° 32 1 6 96.88
1077 27 0 5 100.00
10°8 23 0 4 100.00
1079 22 0 1 100.00
10°10 22 0 0 100.00
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Edge retention in application (Petersen, Osler &
Ekstrgm 2021)

« diotal  dhew  dremoved  Retention (%)
102 61

103 47 0 14 100.00
1074 39 0 8 100.00
105 37 0 2 100.00
10° 32 1 6 96.88
1077 27 0 5 100.00
108 23 0 4 100.00
1079 22 0 1 100.00
10710 22 0 0 100.00

Conclusion: As « decreases, more edges are pruned away

(monotonically).
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What type of temporal information is most useful?

Do we become wiser with time?
On causal equivalence with tiered background knowledge

Christine W. Bang' Vanessa Didelez'*

! Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany

2 Leibniz Institute for F ion Research and Epi i — BIPS, Bremen, Germany
on
N
=]
N Abstract as well as additional causal or directional information that

g is common (o all DAGs in a restricted equivalence class.

— DAGs and CPDAGs are special cases of MPDAGs; DAGs

)

Equivalence classes of DAGs (represented by CP- are MPDAGs with full (or sufficient) backeround know-

Bang & Didelez (2023)
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What type of temporal information is most useful?

Bang & Didelez show mathematically (large sample limit): Early
temporal information is the most useful.

X media
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wave 1

From Bang & Didelez 2023.
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Recall: Orientation rules

R1: Avoid introducing new v-structures (directly):

A C A C
B B

R2: Avoid introducing cycles.
A

J7C . f?c

B B

R3: Avoid introducing new v-structures (indirectly).

I~ - I

|

(
A
B

O «———0N0

SECTION OF BIOSTATISTICS

Note: Need "incoming" information to deduce further orientations. @
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What type of temporal information is most useful?

° Dense graphs Sparse graphs
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From Bang & Didelez 2023. Based on simulated graphs (but perfect knowledge
about conditional independence).
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What type of temporal information is most useful?

° Dense graphs Sparse graphs
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From Bang & Didelez 2023. Based on simulated graphs (but perfect knowledge
about conditional independence).

But unclear what happens on real data. .. %
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How does causal discovery compare with traditional

approaches?

Petersen, Ekstrgm, Spirtes & Osler (2023). Constructing causal life course
models: Comparative study of data-driven and theory-driven approaches.
American Journal of Epidemiology.
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Depression etiology in the Metropolit cohort

RYal

® Cohort encompassing all boys born in the Copenhagen area in 1953
(n = 12270).

® Numerous data collections through time and linkage with health
registers, social registers etc.

® Retrospective study design: Condition on being alive and residing in
Denmark at end-of-followup (2018), and participation.

® We consider 22 variables and n = 3145 complete observations.
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Under-
graduate
education
Weight Low.patemal
social class
Number & Retirement
children
Intelligence
test score
Bullied in Cohabitation
school status
Length
Weekly
Positive cont?ct with Hospital
attitude friends contact
towards due to heart
school Total years disease
of smoking
Low paternal
social class
Intelligence test score BMI
BMI
B_Ing_e Depression
drinking
Mother Maternal
married smoking
Employment
status
Birth Childhood Youth Adulthood Early old age

o
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Study design

® Focus on case: Life course epidemiological study regarding
etiology of depression and heart disease in early old age

® Theory-based model construction: DAGs constructed by
epidemiologists (experts)

¢ Data-driven model construction: Apply temporal PC
algorithm to dataset based on the Metropolit cohort (n =
3145)

o Compare these models

® Assume that expert model is (mostly) correct, but possibly
incomplete

® Expect that data-driven model may or may not be correct, but
perhaps more likely to be complete
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Theory-based model construction: Expert DAGs

® Recruited two experts (health researchers with experience in
epidemiology of heart disease and psychiatry)

® Experts were given:
® List of 22 variables (no data) with temporal information
® |nformation about the intended study population

® Written instructions for DAG construction

® Each edge was annotated with label of confidence:
Moderate/high

® One individual model from each expert + joint consensus
model

Slide 14/30 — More on TPC in practice



Expert instructions

Guidelines for theory-driven model construction: DAG

Using the list of variables provided below, we ask you to construct a directed acyclic graph (DAG) for the
data generating mechanism behind these variables. Constructing a DAG involves suggesting a number of
causal relationships between the variables. In order to decide on which potential causal relationships exist
between two variables, we ask you to consult general theory, relevant literature and previous empirical
studies of the involved variables. However, you are not allowed to refer to previous empirical studies
conducted on the same dataset (the Metropolit cohort). For some of the variables, there may not exist
specific theory or studies to help you in determining causal relationships. In these cases, we ask you to
provide your best educated guess for what causal relationships may or may not exist. Please make sure you
do not propose causal relationships that go against the direction of time (see temporal information on the
variable list).

How to add arrows to the DAG

In order to construct the DAG, you need to add arrows between variables in the attached DAG template. For
each pair of variables, we ask you to draw an arrow between them if you believe that one is a potential
direct cause of the other. A direct causal effect is a causal effect that is not mediated via other variables. For
example, for two variables X and Y, where X is a direct cause of Y, you should draw the following arrow:

If you draw the arrow in the opposite direction, it means that Y is a potential direct cause of X:

Finally, if you do not draw an arrow between X and Y it means that you do not believe that there is any %
direct causal relationships between the two variables: X is not a potential direct cause of Y, and Y is not a
potential direct cause of X: .

Slide 15/30 —
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Data-driven model construction: Temporal PC
algorithm

We used TPC with GLM-based test of non-association.
We considered two strategies for choosing test significance level («):

TPC-S: Search for o such that the number of edges equals
the number of edges in the expert consensus graph.

TPC-P: Pre-specified value of o = 0.01.
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Results: Expert consensus model

Under-
graduate
education

Weight Low.patemal
social class

umber of

children Retirement

Bullied in Cohabitation
school status

Weekly
Positive contact with Hospital
attitude friends

towards
school

contact
due to heart
disease

Total years it

Low paternal

of smoki
social class
Intelligence test score
Binge .
Al ine Depression
Mother Maternal
married smoking
Employment
status
Birth Childhood Youth Adulthood

Early old age
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Results: TPC-S (a-search) model

Under-
graduate

education \

Number of Retirement

Low paternal
social class

Weight

Cohabitation
status

Bullied in
school

Weekly
contact with
friends

Hospital
contact
due to heart
disease

Positive
attitude
towards
school

Total years
of smoking

Low paternal

social class
Intelligence test score

Depression

Mother Maternal
married smoking
Employment
status
Birth Childhood Youth Adulthood Early old age
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Comparison: Expert consensus and TPC-S

Expert consensus
Adjacency Non-adjacency
TPC-S Adjacency 10 20
Non-adjacency 20 181

® Among shared adjacencies, no disagreement on orientation
(although 1 unoriented by TPC-S)

e Overall test of fit (Petersen 2025): p = 0.002 (comparing with
random guessing), expected no. true adjacencies found under
random guessing: 3.9, 95% Cl: (1;7).

e High confidence edges: 6 out of 7 found by TPC-S, all oriented
in same direction as experts.
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Plausibility of additional edges in TPC-S model

Post-hoc assessment of plausibility of additional edges in TPC-S
model:

e All 20 additional edges classified into low/moderate/high
plausibility by reference to epidemiological theory and
literature.

® Results:
Low plausibility: 3 edges.
Moderate plausibility: 6 edges.
High plausibility: 11 edges.

= Additional suggestions from TPC-S seem mostly useful.
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Stability of TPC-S results

OF BIOS

Count  In full?

Low paternal social class (B) —  Low paternal social class (C) 100 B
Intelligence test score (C) —  Intelligence test score (Y) 100 b
BMI (Y) —  BMI(A) 100 X
Intelligence test score () —  Total years of smoking (A) 100 X
Intelligence test score (Y) —  Undergraduate education (A) 100 S
Employment status (A) —  Retirement (E) 100 X
Length (B) —  Weight (B) 100 X
Low paternal social class (B) —  Intelligence test score (Y) 95 b
Mother married (B) —  Low paternal social class (B) 94 X
Low paternal social class (C) —  Undergraduate education (A) 93 X
Binge drinking (A) —  Total years of smoking (A) 88 S
BMI (A) —  Hospital contact due to heart disease (E) 88 X
Undergraduate education (A) —  Retirement (E) 86 X
Employment status (A) —  Total years of smoking (A) 84 b
Number of children (A) —  Cohabitation status (A) 82 X
Mother married (B) —  Intelligence test score (C) 79 X
Employment status (A) —  Cohabitation status (A) 76 S
Undergraduate education (A) - BMI(A) 70 X
Total years of smoking (A) —  Retirement (E) 69 X
Positive attitude towards school (C) —  Intelligence test score (Y) 67 b
Low paternal social class (B) —  Intelligence test score (C) 66 X
Weekly contact with friends (A) —  Cohabitation status (A) 66 X
Intelligence test score (Y) —  Retirement (E) B85 S
Employment status (A) —  Depression (E) 64 X
Hospital contact due to heart disease (E) —  Depression (E) 64 X
Weight (B) —  BMI(Y) 61 x
Depression (E) —  Retirement (E) 58

Low paternal social class (C) —  Intelligence test score (C) 52

Maternal smoking (C) —  Hospital contact due to heart disease (E) 43 S
Undergraduate education (A) —  Total years of smoking (A) 42

Retirement (E) — 42 x

Depression (E)
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Inter expert agreement

Expert 1
Adjacency Non-adjacency
Expert 2 Adjacency 15 22
Non-adjacency 4 190

¢ |arge disagreement about the number of edges (expert 1: 19,
expert 2: 37).

® Agreement about orientation for 13 out of 15 shared edges.

® 5 edges marked with high confidence by both experts,
agreement on orientation for all of these.
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Expert 1 model

Under-
graduate
education
Weight Low.patemal
social class
umber of
children
Bullied in Cohabitation
school status
Weekly
Positive contact with
attitude

friends
towards

school

Low paternal

Total years - due to heart

Retirement

Hospital
contact

disease

of smoking
social class ‘
Intelligence N
test score
BMI
Binge .
/ drinking Depression
Mother Maternal
married smoking
Employment
status
Birth Childhood Youth Adulthood
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Expert 2 model

Under-
graduate
education
Weight Low.patemal
social class
umber of q
i Retirement
children
Intelligence
test scorgé A
Bullied in | Cohabitation
school status
Positive cont'act with Hospital
attitude contact
towards due to heart
school Total years disease
of smoking
Low paternal /
social class —_—
Intelligence
test score

Binge sl Depression

drinking
Mother Maternal
married smoking
Employment
status

Birth Childhood Youth Adulthood Early old age
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Conclusions

TPC recovers parts of the causal model

® Especially good at recovering "high confidence" causal links

TPC gives rather stable results, especially for "high confidence"
causal links

Experts seem to overlook some plausible causal links at first

Experts don't fully agree! Room for improvement over existing
approach (often 1-2 experts)
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Recommendation: Combine and conquer!
Idea for pipeline:

@ Construct expert (consensus) model

® Use TPC-S with edge number from expert model

© Assess TPC-S results critically, add plausible new suggestions
to expert model draft = Final combined model
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But we assumed unobserved confounding. ..

Plausible assumption?

Under-
graduate

education \

Number of Retirement

Low paternal
social class

Weight

Cohabitation
status

Bullied in
school

Weekly
contact with

Hospital

Positive N

attitude friends contact

towards due to heart
Total years diseast

school
of smoking

Low paternal

social class —

Intelligence test score

Depression

Mother Maternal
married smoking
Employment
status
Birth Childhood Youth Adulthood Early old age
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Unobserved confounding in PC

® If there is unobserved confounding, and we have infinite data,
we know (mathematically) that the output from PC gets too
many edges, not too few (Spirtes, Glymour & Scheines 2001).

® On finite data PC is generally biased towards sparse graphs, i.e.
too few edges, due to the way statistical errors propagate
(Petersen, Ramsey, Ekstrgm & Spirtes 2023).
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Unobserved confounding in PC

® If there is unobserved confounding, and we have infinite data,
we know (mathematically) that the output from PC gets too
many edges, not too few (Spirtes, Glymour & Scheines 2001).

® On finite data PC is generally biased towards sparse graphs, i.e.
too few edges, due to the way statistical errors propagate
(Petersen, Ramsey, Ekstrgm & Spirtes 2023).

® We don't know how these two points interact on finite data.

® We don't know what happens to edge orientations, neither on
"infinite" or finite data.
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