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A statistician’'s dream
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Why it would be great

® Constructing DAGs is time consuming and difficult

® Risk of confirmation bias when basing causal inference on
“expert-made” DAG: We can only find what we are looking for

e Different experts end up making different DAGs = current
standard approach is not ideal
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Correlation does not imply causation
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Source: www.xkcd.com/552/
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but causation may imply association

Reichenbach’s common cause principle: An association occurs
due to one of three possible mechanisms:

Attending Understanding

statistics  —— causality

class correctly
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Attending Understanding
statistics — causality

class correctly

Mechanism 2

/ Unknown factor \

Attending Understanding
statistics causality
class correctly

Mechanism 3
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Conditional independence, association, correlation

Notation:
X 1LY means that X is independent of Y.

X 1L Y | Z means that X is independent of Y conditional on Z.

Example: If the variables are jointly normally distributed,
X 1L Y | Z means that if we fit the linear regression model

Yi=a+ 1 Xi+ BoZi + €

we find 51 ~ 0. In this special case, conditional independence = no
association = zero correlation.
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Conditional independence, association, correlation

Notation:
X 1LY means that X is independent of Y.

X 1L Y | Z means that X is independent of Y conditional on Z.

Example: If the variables are jointly normally distributed,
X 1L Y | Z means that if we fit the linear regression model

Yi=a+ 1 Xi+ BoZi + €

we find 51 ~ 0. In this special case, conditional independence = no
association = zero correlation.

= (Conditional) independence is something we may be able
to test from data.
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From causal structure to conditional independence
Three different minimal cases for (conditional) independence:

(“d-separation” provides full definition via Markov assumption)
Case 1: Direct causal effect
X=Y
implies that X} Y and XX Y | Z no matter what Zs are chosen.

Case 2: Causal path or confounding
X—=Z=Y o X<Z+Y o XZ-=Y

all imply that XY and X 1L Y | Z.
Case 3: Collider
X—=>2Z+Y

implies that X 1L Y and XY | Z. If X and Y are not adjacent, we call
X — Z < Y a v-structure.
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From causal structure to conditional independence
Three different minimal cases for (conditional) independence:

(“d-separation” provides full definition via Markov assumption)

Case 1: Direct causal effect
X=Y
implies that X} Y and XX Y | Z no matter what Zs are chosen.

Case 2: Causal path or confounding
X—=Z=Y o X<Z+Y o XZ-=Y

all imply that XY and X 1L Y | Z.
Case 3: Collider
X—>7Z«Y

implies that X 1L Y and XY | Z. If X and Y are not adjacent, we call
X — Z + Y a v-structure.

Hence can learn from data: Whether any two variables are adjacent
(using 1), and if not, whether we are in case 2) or 3).
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Example: Recovering a family of DAGs

BMI Cohabitation Heart disease
Intelligence Employment Depression
Youth Adulthood Early old age
[
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Example: Recovering a family of DAGs

First: Assume nothing, everything may be causally linked

BM|I —— Cohabitation —— Heart disease

Intelligence ———— Employment ———— Depression

— T~

Youth Adulthood Early old age
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Example: Recovering a family of DAGs
Find in data: BMI 1L Cohabitation.

BM|I —— Cohabitation —— Heart disease

Intelligence ———— Employment ———— Depression

— T~

Youth Adulthood Early old age
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Example: Recovering a family of DAGs
Find in data: BMI 1L Cohabitation.

BMI Cohabitation —— Heart disease

Intelligence ———— Employment ———— Depression

— T~

Youth Adulthood Early old age
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Example: Recovering a family of DAGs
Find in data: BMI L Heart disease.

BMI Cohabitation —— Heart disease

Intelligence ———— Employment ———— Depression

— T~

Youth Adulthood Early old age
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Example: Recovering a family of DAGs

Find in data: BMI L Heart disease.

BMI Cohabitation —— Heart disease

Intelligence ———— Employment ———— Depression

— T~

Youth Adulthood Early old age
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Example: Recovering a family of DAGs

Find in data: BMI L Employment | Intelligence.

BMI Cohabitation —— Heart disease

Intelligence ———— Employment ———— Depression

— T~

Youth Adulthood Early old age

Slide 8/18 — CPDAGs and the PC algorithm



UNIVERSITY OF COPENHAGEN SECTION OF BIOSTATISTICS

Example: Recovering a family of DAGs

Find in data: BMI L Depression | (Employment, Heart disease).

BMI Cohabitation —— Heart disease

Intelligence ———— Employment ———— Depression

— T~

Youth Adulthood Early old age
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Example: Recovering a family of DAGs

Find in data: Intelligence L Cohabitation.

BMI Cohabitation —— Heart disease

Intelligence ———— Employment ———— Depression

— T~

Youth Adulthood Early old age

&
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Example: Recovering a family of DAGs

Find in data: Intel. 1L Depr. | (Employm., Heart disease).

BMI Cohabitation —— Heart disease
Intelligence ———— Employment ———— Depression
Youth Adulthood Early old age
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Example: Recovering a family of DAGs

Find in data: Employment Il Cohabitation.

BMI Cohabitation —— Heart disease
Intelligence ———— Employment ———— Depression
Youth Adulthood Early old age

&
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Example: Recovering a family of DAGs

Find in data: Employment I Heart disease.

BMI Cohabitation —— Heart disease
Intelligence ———— Employment ———— Depression
Youth Adulthood Early old age

&
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Example: Recovering a family of DAGs

Find in data: Cohabitation L Depression | Heart disease.

BMI Cohabitation — Heart disease
Intelligence ——— Employment ———— Depression
Youth Adulthood Early old age

&
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Example: Recovering a family of DAGs

Find in data: No other (conditional) independencies!
Next step: Look for v-structures.

BMI Cohabitation —— Heart disease
Intelligence ——— Employment ———— Depression
Youth Adulthood Early old age
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Example: Recovering a family of DAGs

Potential v-structure: BMI — Intel. — Heart disease.
Find in data: BMI L Heart disease | Intel. Not v-struct.

BMI Cohabitation ——— Heart disease
Intelligence ——— — Employment ————— Depression
Youth Adulthood Early old age
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Example: Recovering a family of DAGs

Potential v-structure: BMI — Intel. — Employm.
Find in data: BMI L Employm. | Intel. Not v-struct.

BMI Cohabitation ——— Heart disease
Intelligence ——— — Employment ————— Depression
Youth Adulthood Early old age
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Example: Recovering a family of DAGs

Potential v-structure: Heart disease — Intel. — Employm.
Find in data: Heart disease Ll Employm. | Intel. Not v-struct.

BMI Cohabitation ——— Heart disease
Intelligence ——— — Employment ————— Depression
Youth Adulthood Early old age
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Example: Recovering a family of DAGs

Potential v-structure: Cohab. — Hearth disease — Intel.
Find in data: Cohab. X Intel. | Hearth disease. V-struct.!

BMI Cohabitation ——— Heart disease
Intelligence ——— — Employment ————— Depression
Youth Adulthood Early old age
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Example: Recovering a family of DAGs

Potential v-structure: Intel. — Employm. — Dep.
Find in data: Intel. 1L Dep. | Employm. Not v-struct.

BMI Cohabitation ———— Heart disease
Intelligence ——— — Employment ———— Depression
Youth Adulthood Early old age
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Example: Recovering a family of DAGs

Potential v-structure: Employm. — Dep. — Heart disease
Find in data: Employm. Ll Heart disease | Dep. V-struct.!

BMI Cohabitation ——— Heart disease
Intelligence ——— — Employment ———— Depression
Youth Adulthood Early old age
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Example: Recovering a family of DAGs

No more potential v-structures to consider.
Final graph! Note: Some edges still unoriented.

BMI Cohabitation —— Heart disease
Intelligence ———— Employment ————— Depression
Youth Adulthood Early old age
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The PC algorithm (Spirtes & Glymour 1991
Peter-Clark (PC) algorithm summary

Input: Information about conditional independencies?

@ Start with fully connected undirected graph.

@ Repeat: For each pair of variables (A, B), look for separating sets S
among variables adjancent to A or B such that A Ll B | S. If such
an S exists: Remove edge between A and B.

©® Look for v-structures: For each triple A— B — C with A and C
non-adjacent, if B is not in any separating set for (A, C), orient as
A— B+ C.

@ Apply additional orientation rules avoiding introducing new
v-structures and cycles.

Output: Family (“equivalence class”) of DAGs - completed partially
directed acyclic graph (CPDAG).

?In practice we use statistical tests to determine conditional independence.
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A statistician’s dream version 2.0

© Pi//causalDisco - master - RStudio Sou..  — o X
numData
Fiter
xt @ xa z v

3301720 7569873 6.029135 0439524 13454731 A

. /
2 3414703 14188453 9712695 9.769823 16.038376 X
3 3698171 9334827 6.896619 11.558708 13.107802
4 4202275 10043174 8131201 10.070508 18.803295
5 4168309 6660888 5.917512 10.129288 20.587377
6 4655413 12.207344 8.296038 11.715065 23.831699 X
T 4129180 14153822 8.673465 10.460916 22983059
8
9
X

3066846 10.600475 7.478397 5734935 13.608160
3062538 11641169 343594 9313147 12973388
10 3534673 13575142 9.159190 9.554338 17.606833
11 5052163 15663085 9.316434 11224082 31416680
12 3753359 11015555 8334251 10359814 15905559 v
Showing 1 to 12 of 1,000 entries

Goal: Estimate CPDAG by analyzing data (i.e., causal discovery).

Overall idea: Causal relationships leave behind traces in data (conditional
independencies) that can be used to reconstruct parts of the causal model
(its Markov equivalence class/CPDAG).

Focus of today: Causal discovery algorithms making use of conditional
independence testing (constraint-based). Py
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CPDAG 101: A family of DAGs
Xy Xy — X5 X, Xy — X5

X, X, Xe X, X, X,

® We can divide all possible DAGs into families (equivalence classes)
according to what conditional independencies they entail.

e All DAGs in a family will have the same adjacencies + same
v-structures, and they can be represented by a (unique) completed
partially directed acyclic graph (CPDAG).

® CPDAGs can have both directed (—) and undirected (—) edges.

® CPDAG interpretation: Directed edges are interpreted as for DAGs.
Undirected edges mean that some family members orient it one way,
others the other way.
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PC orientation rules

First, apply v-structure orientation: For each structure
A—B—C,AA4C: orientas A— B+ Cif B¢ S for all S such
that A 1L C|S.

C

/

Next, recursively apply three additional rules (next slide) until no
further changes are made.

C

A
| / =
B

W— >

These rules are sound and complete (in the large sample limit):
No incorrect orientations occur, and no further orientations can be
made (Meek 1995).
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Meek's orientation rules

R1: Avoid introducing new v-structures (directly):
A C A C
| = |
B B

R2: Avoid introducing cycles.
—— C A—C
B
R3: Avoid introducing new v-structures (indirectly).

A—C
e

W — >

A

O —0

|
B

SECTION OF BIOSTATISTICS
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PC algorithm assumptions and guarantees

Assumptions:

® Acyclic data generating mechanisms: No feedback loops
® No unobserved confounding
® Faithfulness: Cond. independencies in data = DAG structure
® No conditioning on unobserved colliders
Under these assumptions + a valid test of conditional independence, PC is
mathematically proven to be
correct: no false claims, and

complete: no further causal structure can be inferred without
additional assumptions
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PC algorithm assumptions and guarantees

Assumptions:

® Acyclic data generating mechanisms: No feedback loops

® No unobserved confounding

® Faithfulness: Cond. independencies in data = DAG structure

® No conditioning on unobserved colliders
Under these assumptions + a valid test of conditional independence, PC is
mathematically proven to be

correct: no false claims, and
complete: no further causal structure can be inferred without

additional assumptions

... but in practice: Assumptions may be violated, conditional
independence tests subject to statistical error.
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Choices to be made

Using PC on empirical data requires one to choose:
@ A conditional independence test.

@® A significance level to use in the tests.

Slide 15/18 — CPDAGs and the PC algorithm



UNIVERSITY OF COPENHAGEN SECTION OF BIOSTATISTICS

Choices to be made

Using PC on empirical data requires one to choose:
@ A conditional independence test.

@® A significance level to use in the tests.

Note:

® There does not exist a generally correct tests of conditional
independence which does not rely on some distributional
assumptions (Shah & Petersen 2020).

® We do not have a principled approach for choosing the test
level.
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Conditional independence testing
We do have some simple examples where correct tests® do exist:

1Up to statistical uncertainty... [
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Conditional independence testing
We do have some simple examples where correct tests® do exist:

Recall: If the data are jointly normally distributed, we have:
XUY|Z&scor(X,Y|Z)=0

and cor(X, Y| Z) = 0 is equivalent with testing Hp : 81 = 0 in the
linear regression model

Yi=a+ - Xi+ B2 Zi+ €

1Up to statistical uncertainty...
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Conditional independence testing

We do have some simple examples where correct tests® do exist:

Recall: If the data are jointly normally distributed, we have:
XUY|Z&scor(X,Y|Z)=0

and cor(X, Y| Z) = 0 is equivalent with testing Hp : 81 = 0 in the

linear regression model

Yi=a+p1-Xi+ P2 Zi+ €

If the data are exclusively categorical, we can directly test
conditional independence by use of e.g. a x? test of independence
on the multiway cross tabulation over X, Y, Z.

1Up to statistical uncertainty...
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Conditional independence testing
We do have some simple examples where correct tests® do exist:

Recall: If the data are jointly normally distributed, we have:
XUWLY|Zscor(X,Y]|Z)=0

and cor(X, Y| Z) = 0 is equivalent with testing Hp : 81 = 0 in the

linear regression model

Yi=a+p1-Xi+ P2 Zi+ €

If the data are exclusively categorical, we can directly test
conditional independence by use of e.g. a x? test of independence
on the multiway cross tabulation over X, Y, Z.

Today, we will (pragmatically) test a necessary condition for
conditional independence for mix of binary/numeric variables: Test
for non-association using GLMs with spline-expansions (Petersen,

1Up to statistical uncertainty...
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Test level

® The significance level used for individual tests in the PC
algorithm is not a proper significance level for the globally

estimated graph

® |t does not describe the overall risk of type | error

® Many tests are conducted, and the result of one test informs
what test should be conducted next = a complicated multiple
testing issue without obvious solutions
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Test level

® The significance level used for individual tests in the PC
algorithm is not a proper significance level for the globally
estimated graph

® |t does not describe the overall risk of type | error

® Many tests are conducted, and the result of one test informs
what test should be conducted next = a complicated multiple
testing issue without obvious solutions

® Today, we will pragmatically consider an arbitrary choice of
= 0.05 (exercises regarding varying this).
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