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A statistician’s dream
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Why it would be great

• Constructing DAGs is time consuming and difficult
• Risk of confirmation bias when basing causal inference on

“expert-made” DAG: We can only find what we are looking for
• Different experts end up making different DAGs ⇒ current

standard approach is not ideal
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Correlation does not imply causation

Source: www.xkcd.com/552/
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. . . but causation may imply association
Reichenbach’s common cause principle: An association occurs
due to one of three possible mechanisms:
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Conditional independence, association, correlation
Notation:

X ⊥⊥ Y means that X is independent of Y .

X ⊥⊥ Y | Z means that X is independent of Y conditional on Z .

Example: If the variables are jointly normally distributed,
X ⊥⊥ Y | Z means that if we fit the linear regression model

Yi = α + β1Xi + β2Zi + ϵi

we find β̂1 ≃ 0. In this special case, conditional independence = no
association = zero correlation.

⇒ (Conditional) independence is something we may be able
to test from data.
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From causal structure to conditional independence
Three different minimal cases for (conditional) independence:
(“d-separation” provides full definition via Markov assumption)

Case 1: Direct causal effect
X → Y

implies that XZZ⊥⊥Y and XZZ⊥⊥Y | Z no matter what Z s are chosen.

Case 2: Causal path or confounding
X → Z → Y or X ← Z ← Y or X ← Z → Y

all imply that XZZ⊥⊥Y and X ⊥⊥ Y | Z .

Case 3: Collider
X → Z ← Y

implies that X ⊥⊥ Y and XZZ⊥⊥Y | Z . If X and Y are not adjacent, we call
X → Z ← Y a v-structure.

Hence can learn from data: Whether any two variables are adjacent
(using 1), and if not, whether we are in case 2) or 3).
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Example: Recovering a family of DAGs

Intelligence

Youth

BMI

Employment

Adulthood

Cohabitation

Depression

Early old age

Heart disease
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Example: Recovering a family of DAGs
First: Assume nothing, everything may be causally linked
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Example: Recovering a family of DAGs
Find in data: BMI ⊥⊥ Cohabitation.

Intelligence

Youth

BMI

Employment

Adulthood

Cohabitation

Depression

Early old age

Heart disease

Slide 8/18 — CPDAGs and the PC algorithm



u n i v e r s i t y o f c o p e n h a g e n s e c t i o n o f b i o s t a t i s t i c s

Example: Recovering a family of DAGs
Find in data: BMI ⊥⊥ Cohabitation.

Intelligence

Youth

BMI

Employment

Adulthood

Cohabitation

Depression

Early old age

Heart disease

Slide 8/18 — CPDAGs and the PC algorithm



u n i v e r s i t y o f c o p e n h a g e n s e c t i o n o f b i o s t a t i s t i c s

Example: Recovering a family of DAGs
Find in data: BMI ⊥⊥ Heart disease.
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Example: Recovering a family of DAGs
Find in data: BMI ⊥⊥ Employment | Intelligence.
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Example: Recovering a family of DAGs
Find in data: BMI ⊥⊥ Depression | (Employment, Heart disease).
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Example: Recovering a family of DAGs
Find in data: Intel. ⊥⊥ Depr. | (Employm., Heart disease).
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Example: Recovering a family of DAGs

Find in data: Cohabitation ⊥⊥ Depression | Heart disease.
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Example: Recovering a family of DAGs

Find in data: No other (conditional) independencies!
Next step: Look for v-structures.

Intelligence

Youth

BMI

Employment

Adulthood

Cohabitation

Depression

Early old age

Heart disease

Slide 8/18 — CPDAGs and the PC algorithm



u n i v e r s i t y o f c o p e n h a g e n s e c t i o n o f b i o s t a t i s t i c s

Example: Recovering a family of DAGs

Potential v-structure: BMI − Intel. − Heart disease.
Find in data: BMI ⊥⊥ Heart disease | Intel. Not v-struct.
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Example: Recovering a family of DAGs

Potential v-structure: Heart disease − Intel. − Employm.
Find in data: Heart disease ⊥⊥ Employm. | Intel. Not v-struct.

Intelligence

Youth

BMI

Employment

Adulthood

Cohabitation

Depression

Early old age

Heart disease

Slide 8/18 — CPDAGs and the PC algorithm



u n i v e r s i t y o f c o p e n h a g e n s e c t i o n o f b i o s t a t i s t i c s

Example: Recovering a family of DAGs

Potential v-structure: Cohab. − Hearth disease − Intel.
Find in data: Cohab. ZZ⊥⊥ Intel. | Hearth disease. V-struct.!
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Example: Recovering a family of DAGs
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Example: Recovering a family of DAGs

No more potential v-structures to consider.
Final graph! Note: Some edges still unoriented.
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The PC algorithm (Spirtes & Glymour 1991)
Peter-Clark (PC) algorithm summary
Input: Information about conditional independenciesa

1 Start with fully connected undirected graph.

2 Repeat: For each pair of variables (A, B), look for separating sets S
among variables adjancent to A or B such that A ⊥⊥ B | S. If such
an S exists: Remove edge between A and B.

3 Look for v-structures: For each triple A− B − C with A and C
non-adjacent, if B is not in any separating set for (A, C), orient as
A→ B ← C .

4 Apply additional orientation rules avoiding introducing new
v-structures and cycles.

Output: Family (“equivalence class”) of DAGs - completed partially
directed acyclic graph (CPDAG).

aIn practice we use statistical tests to determine conditional independence.
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A statistician’s dream version 2.0

Goal: Estimate CPDAG by analyzing data (i.e., causal discovery).

Overall idea: Causal relationships leave behind traces in data (conditional
independencies) that can be used to reconstruct parts of the causal model
(its Markov equivalence class/CPDAG).

Focus of today: Causal discovery algorithms making use of conditional
independence testing (constraint-based).
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CPDAG 101: A family of DAGs

• We can divide all possible DAGs into families (equivalence classes)
according to what conditional independencies they entail.

• All DAGs in a family will have the same adjacencies + same
v-structures, and they can be represented by a (unique) completed
partially directed acyclic graph (CPDAG).

• CPDAGs can have both directed (→) and undirected (−) edges.
• CPDAG interpretation: Directed edges are interpreted as for DAGs.

Undirected edges mean that some family members orient it one way,
others the other way.
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PC orientation rules

First, apply v-structure orientation: For each structure
A− B − C , A��−C : orient as A→ B ← C if B /∈ S for all S such
that A ⊥⊥ C | S.

A

B

C
⇒

A

B

C

Next, recursively apply three additional rules (next slide) until no
further changes are made.

These rules are sound and complete (in the large sample limit):
No incorrect orientations occur, and no further orientations can be
made (Meek 1995).
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Meek’s orientation rules
R1: Avoid introducing new v-structures (directly):

A

B

C
⇒

A

B

C

R2: Avoid introducing cycles.

A

B

C
⇒

A

B

C

R3: Avoid introducing new v-structures (indirectly).

A

B

C

D
⇒

A

B

C

D
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PC algorithm assumptions and guarantees
Assumptions:

• Acyclic data generating mechanisms: No feedback loops
• No unobserved confounding
• Faithfulness: Cond. independencies in data ⇒ DAG structure
• No conditioning on unobserved colliders

Under these assumptions + a valid test of conditional independence, PC is
mathematically proven to be

correct: no false claims, and

complete: no further causal structure can be inferred without
additional assumptions

... but in practice: Assumptions may be violated, conditional
independence tests subject to statistical error.
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Choices to be made

Using PC on empirical data requires one to choose:

1 A conditional independence test.

2 A significance level to use in the tests.

Note:

• There does not exist a generally correct tests of conditional
independence which does not rely on some distributional
assumptions (Shah & Petersen 2020).

• We do not have a principled approach for choosing the test
level.
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Conditional independence testing
We do have some simple examples where correct tests1 do exist:

Recall: If the data are jointly normally distributed, we have:
X ⊥⊥ Y |Z ⇔ cor(X , Y |Z ) = 0

and cor(X , Y |Z ) = 0 is equivalent with testing H0 : β1 = 0 in the
linear regression model

Yi = α + β1 · Xi + β2 · Zi + ϵi

If the data are exclusively categorical, we can directly test
conditional independence by use of e.g. a χ2 test of independence
on the multiway cross tabulation over X , Y , Z .

Today, we will (pragmatically) test a necessary condition for
conditional independence for mix of binary/numeric variables: Test
for non-association using GLMs with spline-expansions (Petersen,
Osler & Ekstrøm 2021).

1Up to statistical uncertainty...
Slide 16/18 — CPDAGs and the PC algorithm



u n i v e r s i t y o f c o p e n h a g e n s e c t i o n o f b i o s t a t i s t i c s

Conditional independence testing
We do have some simple examples where correct tests1 do exist:

Recall: If the data are jointly normally distributed, we have:
X ⊥⊥ Y |Z ⇔ cor(X , Y |Z ) = 0

and cor(X , Y |Z ) = 0 is equivalent with testing H0 : β1 = 0 in the
linear regression model

Yi = α + β1 · Xi + β2 · Zi + ϵi

If the data are exclusively categorical, we can directly test
conditional independence by use of e.g. a χ2 test of independence
on the multiway cross tabulation over X , Y , Z .

Today, we will (pragmatically) test a necessary condition for
conditional independence for mix of binary/numeric variables: Test
for non-association using GLMs with spline-expansions (Petersen,
Osler & Ekstrøm 2021).

1Up to statistical uncertainty...
Slide 16/18 — CPDAGs and the PC algorithm



u n i v e r s i t y o f c o p e n h a g e n s e c t i o n o f b i o s t a t i s t i c s

Conditional independence testing
We do have some simple examples where correct tests1 do exist:

Recall: If the data are jointly normally distributed, we have:
X ⊥⊥ Y |Z ⇔ cor(X , Y |Z ) = 0

and cor(X , Y |Z ) = 0 is equivalent with testing H0 : β1 = 0 in the
linear regression model

Yi = α + β1 · Xi + β2 · Zi + ϵi

If the data are exclusively categorical, we can directly test
conditional independence by use of e.g. a χ2 test of independence
on the multiway cross tabulation over X , Y , Z .

Today, we will (pragmatically) test a necessary condition for
conditional independence for mix of binary/numeric variables: Test
for non-association using GLMs with spline-expansions (Petersen,
Osler & Ekstrøm 2021).

1Up to statistical uncertainty...
Slide 16/18 — CPDAGs and the PC algorithm



u n i v e r s i t y o f c o p e n h a g e n s e c t i o n o f b i o s t a t i s t i c s

Conditional independence testing
We do have some simple examples where correct tests1 do exist:

Recall: If the data are jointly normally distributed, we have:
X ⊥⊥ Y |Z ⇔ cor(X , Y |Z ) = 0

and cor(X , Y |Z ) = 0 is equivalent with testing H0 : β1 = 0 in the
linear regression model

Yi = α + β1 · Xi + β2 · Zi + ϵi

If the data are exclusively categorical, we can directly test
conditional independence by use of e.g. a χ2 test of independence
on the multiway cross tabulation over X , Y , Z .

Today, we will (pragmatically) test a necessary condition for
conditional independence for mix of binary/numeric variables: Test
for non-association using GLMs with spline-expansions (Petersen,
Osler & Ekstrøm 2021).

1Up to statistical uncertainty...
Slide 16/18 — CPDAGs and the PC algorithm



u n i v e r s i t y o f c o p e n h a g e n s e c t i o n o f b i o s t a t i s t i c s

Test level

• The significance level used for individual tests in the PC
algorithm is not a proper significance level for the globally
estimated graph
• It does not describe the overall risk of type I error
• Many tests are conducted, and the result of one test informs

what test should be conducted next ⇒ a complicated multiple
testing issue without obvious solutions

• Today, we will pragmatically consider an arbitrary choice of
α = 0.05 (exercises regarding varying this).
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