

| UNIVERSITY OF COPI | ENHAGEN      |           | FACULTY OF LIFE S                   |
|--------------------|--------------|-----------|-------------------------------------|
| Comparis           | son of two   | samples   | : overview                          |
|                    | x, y indep.? | Same sd.? | R                                   |
| Example?           | Yes          | Yes       | <pre>t.test(x,y, var.equal=T)</pre> |
| Example?           | Yes          | No        | t.test(x,y)                         |
| Example?           | No           |           | <pre>t.test(x,y, paired=T)</pre>    |

For comparison of two groups some form of *t*-test may be used.

What about comparison of three or more groups? One-way ANOVA!





#### UNIVERSITY OF COPENHAGEN

lide 2 - Statistics for Life Science (Week 4-2) - Comparison of groups

#### FACULTY OF LIFE SCIENCES

Antibiotics and the decomposition of organic material

## Data

- Five types antibiotics and a control
- 36 heifers allocated to 6 treatment groups. Feed added antibiotics
- Dung suspended in bags in the ground
- Amount of organic material measured after 8 weeks.
- For spiramycin: only four measurements available

Problem:

• Does the antibiotics affect the decomposition of organic material?



## Statistical model

Recall that g(i) denotes the group for observation *i*. For example

 $g(1) = \cdots = g(6) = \text{control}, \quad g(31) = \cdots = g(34) = \text{Spiramycin}$  $g(1) = \cdots = g(6) = 1, \qquad g(31) = \cdots = g(34) = 6.$ 

Statistical model:  $y_1, \ldots, y_{34}$  are independent and

 $y_i \sim N(\alpha_{g(i)}, \sigma^2)$ 

Parameters:  $\alpha_1, \ldots, \alpha_6$  and  $\sigma$ .

Equivalently:

$$y_i = \alpha_{g(i)} + e_i, \quad e_1, \dots, e_{34} \sim N(0, \sigma^2)$$
 independent

lide 6 — Statistics for Life Science (Week 4-2) — Comparison of groups

UNIVERSITY OF COPENHAGEN

#### FACULTY OF LIFE SCIENCES

Estimation and confidence intervals Statistical model:

$$y_i = \alpha_{g(i)} + e_i, \quad e_1, \dots, e_n \sim N(0, \sigma^2)$$
 independent

Parameters:  $\alpha_1, \ldots, \alpha_k$  and  $\sigma$ . In particular, we are interested in differences,  $\alpha_i - \alpha_l$ !

Estimates and standard errors:

Slide 8 — Statistics for Life Science (Week 4-2) — Comparison of groups

$$\hat{\alpha}_{j} = \bar{y}_{j}; \quad \text{SE}(\hat{\alpha}_{j}) = s\sqrt{1/n_{j}} = s/\sqrt{n_{j}}$$
$$\hat{\alpha}_{j} - \hat{\alpha}_{l} = \bar{y}_{j} - \bar{y}_{l}; \quad \text{SE}(\hat{\alpha}_{j} - \hat{\alpha}_{l}) = s\sqrt{1/n_{j} + 1/n_{l}}$$
$$\hat{\alpha} = s$$

Confidence intervals from the usual recipe:

estimate  $\pm t_{0.975,n-k} \cdot \text{SE}(\text{estimate})$ 

NB. The pooled *s* is used, also when comparing two groups!

ė 3.0 Type ni Si Organic material 2.6 2.7 2.8 2.9 Control 6 2.603 0.119 2.895 0.117  $\alpha$ -cyperm. 6 Enrofloxacin 0.162 6 2.710 Fenbendaz. 6 2.833 0.124 lvermectin 6 3.002 0.1092.5 Spiramycin 4 2.855 0.054 2.4 Enr Fen Ive Alp Con Pooled estimate of the standard deviation:  $s = \sqrt{\frac{1}{28} \left( 5 \cdot s_1^2 + \dots + 3 \cdot s_6^2 \right)} = \sqrt{\frac{1}{34 - 6} \sum_{i=1}^n (y_i - \bar{y}_{g(i)})^2} = 0.1217$ ide 5 — Statistics for Life Science (Week 4-2) — Comparison of groups

Group means and standard deviations



Fitting the model:

One-way ANOVA in R

# One-way ANOVA in R

Output from summary(model1):

Coefficients:

UNIVERSITY OF COPENHAGEN

|                                 | Estimate | Std. Error | t value | Pr(> t ) |     |
|---------------------------------|----------|------------|---------|----------|-----|
| (Intercept)                     | 2.60333  | 0.04970    | 52.379  | < 2e-16  | *** |
| <pre>factor(type)Alfacyp</pre>  | 0.29167  | 0.07029    | 4.150   | 0.000281 | *** |
| <pre>factor(type)Enroflox</pre> | 0.10667  | 0.07029    | 1.518   | 0.140338 |     |
| factor(type)Fenbenda            | 0.23000  | 0.07029    | 3.272   | 0.002834 | **  |
| factor(type)Ivermect            | 0.39833  | 0.07029    | 5.667   | 4.5e-06  | *** |
| factor(type)Spiramyc            | 0.25167  | 0.07858    | 3.202   | 0.003384 | **  |
|                                 |          |            |         |          |     |

Residual standard error: 0.1217 on 28 degrees of freedom

Interpretations:

- Estimate and CI for  $\alpha_{cont}$ ,  $\alpha_{Fenb} \alpha_{cont}$  and  $\alpha_{Fenb}$ ? Estimat for  $\sigma$ ?
- Why are the SE's not the same?

Slide 10 — Statistics for Life Science (Week 4-2) — Comparison of groups

| Hypothesis. Variati<br>groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ion within and between                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hypothesis, $H_0: lpha_1 = \cdots =$<br>Alternative, $H_A:$ at least t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $= \alpha_k.$<br>wo $\alpha$ 's are different.                                                                                                                                                                                                                                                                                                                                                                                       |
| Organic material<br>Organic material<br>Organic material<br>Organic material<br>Organic material<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organic<br>Organi<br>Organic<br>Organic<br>Organic<br>Or | <ul> <li>Variation within groups — points around the lines<br/>SS<sub>e</sub> = ∑<sup>n</sup><sub>i=1</sub>(y<sub>i</sub> - ȳ<sub>g(i)</sub>)<sup>2</sup></li> <li>Variation between groups — Lines around the dashed line<br/>SS<sub>grp</sub> = ∑<sup>k</sup><sub>j=1</sub> n<sub>j</sub>(ȳ<sub>j</sub> - ȳ)<sup>2</sup></li> <li>Test statistic<br/>F = MS<sub>grp</sub> = SS<sub>grp/(k-1)</sub>/SS<sub>e</sub>/(n-k)</li> </ul> |

| C C                                                           |                            |                              |            |                        |          |
|---------------------------------------------------------------|----------------------------|------------------------------|------------|------------------------|----------|
| > model1 <- lm(or<br>> summary(model1)                        | g~factor(                  | (type))                      |            |                        |          |
| R chooses a reference g<br>estimates changes comp             | roup — the<br>pared to tha | e first in alph<br>at group. | nabetic or | <sup>.</sup> der — and |          |
| We prefer the control gr                                      | roup as the                | reference gr                 | oup:       |                        |          |
| > type <- relevel<br>> model1 <- lm(or<br>> summary(model1)   | (type, re<br>g~factor(     | ef="Contro]<br>(type))       | L")        |                        |          |
|                                                               |                            |                              |            |                        | all stop |
|                                                               |                            |                              |            |                        | 6        |
| Slide 9 — Statistics for Life Science (Week 4-2) — Comparison | n of groups                |                              |            |                        |          |
| (                                                             | 8                          |                              |            |                        |          |
|                                                               |                            |                              |            |                        |          |
| UNIVERSITY OF COPENHACEN                                      | _                          |                              | FACILLT    | V OF LIFF SCI          | ENCES    |
|                                                               |                            |                              | 1110021    |                        | 211020   |
| One-way ANOVA                                                 | in R.                      |                              |            |                        |          |
|                                                               |                            |                              |            |                        |          |
|                                                               |                            |                              |            |                        |          |
| If we prefer to see the g                                     | roup means                 | 5:                           |            |                        |          |
|                                                               | <i>,</i> ,                 |                              |            |                        |          |
| > model2 <- lm(org~fa                                         | ctor(type)                 | -1)                          |            |                        |          |
| > summary(model2)                                             |                            |                              |            |                        |          |
| coefficients:                                                 | Fatimato S                 | td Frror t                   |            | $Pr(\lambda + )$       |          |
| factor(type)Control                                           | 2 60333                    | 0 04970                      | 52 38      | <20-16 ***             |          |
| factor(type)Alfacyp                                           | 2.89500                    | 0.04970                      | 58.25      | <2e-16 ***             |          |
| factor(type)Enroflox                                          | 2.71000                    | 0.04970                      | 54.53      | <2e-16 ***             |          |
| factor(type)Fenbenda                                          | 2.83333                    | 0.04970                      | 57.01      | <2e-16 ***             |          |
| factor(type)Ivermect                                          | 3.00167                    | 0.04970                      | 60.39      | <2e-16 ***             |          |
| factor(type)Spiramyc                                          | 2.85500                    | 0.06087                      | 46.90      | <2e-16 ***             |          |
| Residual standard err                                         | ar: 0.1217                 | on 28 dem                    | rees of f  | freedom                |          |
|                                                               | 01. 0.1217                 | on zo degi                   | .665 01 1  | reedom                 |          |
|                                                               |                            |                              |            |                        | _        |
|                                                               |                            |                              |            |                        | A        |
|                                                               |                            |                              |            |                        |          |
| Slide 11 — Statistics for Life Science (Week 4-2) — Compariso | on of groups               |                              |            |                        | -        |
|                                                               |                            |                              |            |                        |          |

FACULTY OF LIFE SCIENCES

## Comparison af alle groupsne

Do not use model2 for this — only model1

Test statistic

$$F = \frac{\mathrm{MS}_{\mathrm{grp}}}{\mathrm{MS}_{e}} = \frac{\mathrm{SS}_{\mathrm{grp}}/(k-1)}{\mathrm{SS}_{e}/(n-k)}$$

Large values of F are in disagreement with the hypothesis. Hence, the p-value is

$$p = P(F \ge F_{obs}) = P(F \ge 7.97) = 0.00009$$

There is overwhelming evidence that the hypothesis is not true.

How did we get the *p*-value?

Slide 13 — Statistics for Life Science (Week 4-2) — Comparison of groups

## UNIVERSITY OF COPENHAGEN

FACULTY OF LIFE SCIENCES

Pairwise comparisons

Suppose we want to compare the control group (1) with the Fenbendazole group (4):  $\alpha_4 - \alpha_1$ .

Estimate and its standard error:

$$\hat{\alpha}_4 - \hat{\alpha}_1 = 2.833;$$
 SE $(\hat{\alpha}_4 - \hat{\alpha}_1) = 0.07029$ 

- Confidence interval for  $\alpha_4 \alpha_1$ ?
- Test for the hypothesis  $H_0: \alpha_1 = \alpha_4$ ?
- Do all the groups differ significantly from the control group?



# The *F*-distribution

If the hypothesis is true, then the *F*-test statistic is *F*-distributed with (k-1, n-k) degrees of freedom.



### UNIVERSITY OF COPENHAGEN

## FACULTY OF LIFE SCIENCES

LSD-value: least significant difference A confidence interval for the difference  $\alpha_i - \alpha_l$  is

$$\hat{\alpha}_j - \hat{\alpha}_l \pm \mathsf{LSD}$$

where

$$LSD_{j,l} = t_{0.975,n-k} \cdot SE(\hat{\alpha}_j - \hat{\alpha}_l) = t_{0.975,n-k} \cdot s \cdot \sqrt{1/n_j + 1/n_l}.$$

A t-test for the hypothesis that the difference is zero uses the test statistic

$$T = \frac{|\hat{\alpha}_j - \hat{\alpha}_l|}{\operatorname{SE}(\hat{\alpha}_j - \hat{\alpha}_l)}$$

which is *t*-distributed with n-k degrees of freedom. LSD for control and fenbend.:  $2.048 \cdot 0.1217 \cdot \sqrt{1/6 + 1/6} = 0.144$ 

If all group sizes are the same, then so are the LSD-values:

$$\text{LSD} = t_{0.975, n-k} \cdot \text{SE}(\hat{\alpha}_j - \hat{\alpha}_l) = t_{0.975, n-k} \cdot s \cdot \sqrt{2/n'}$$

Slide 16 — Statistics for Life Science (Week 4-2) — Comparison of groups

## UNIVERSITY OF COPENHAGEN

FACULTY OF LIFE SCIENCES

## Conclusion

Different effects of the different types has been shown with high degree of certainty (p < 0.0001)

For all types except Enrofloxacin the amount of organic material is significantly higher than for the control group.

These statements should be supplemented by estimates and confidence intervals for  $\alpha$ 's and/or for differences to the control group.



ide 17 — Statistics for Life Science (Week 4-2) — Comparison of groups

## UNIVERSITY OF COPENHAGEN

FACULTY OF LIFE SCIENCES

Summary: one-way ANOVA

- Statistical model: normal distribution with same SD in the groups; independence
- Estimation: group means and pooled SD
- Confidence interval: estimat  $\pm t_{0.975,n-k} \cdot \text{SE}(\text{estimate})$
- Hypothesis of equal group means tested by  $F = MS_{grp}/MS_e$ .
- Pairwise comparisons conducted "within" the model, using all the observations to estimate the SD.

With only two groups, *t*-tests suffice. Different versions:

- Paired or unpaired?
- If unpaired: same SD or not?





Any time we make a test a type I error may occur. The risk depends on the level of significance — often 5%. One test: risk of type I error: 5% By *m* independent tests:

 $1 - 0.95^{m}$ 

Slide 20 — Statistics for Life Science (Week 4-2) — Comparison of groups



FACULTY OF LIFE SCIENCES

# FACULTY OF LIFE SCIENCES Lecture summary: main points One-way ANOVA • Assumptions for one-way ANOVA • Hypotheses for one-way ANOVA • Test statistic and the *F*-fordelingen