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Program

• Distribution of a sample mean

• Statistical inference for a single sample
• statistical model
• estimation and precision of estimates
• the t-distribution
• confidence intervals

• Statistical inference for linear regression
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The sample mean

Weights of crabs:

• Wanted: the mean weight in the population — µ

• We have: a sample of n = 162 weights: y1, . . . ,y162.

• Sample statistics, ȳ = 12.76 and s = 2.25.

• Estimate of µ is µ̂ = ȳ = 12.76

• But how precise is it?

How large can we expect µ̂−µ to be?

To answer this we make a confidence interval for µ. This requires a
statistical model.
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Distribution of a sample mean

Histograms of the sample mean of n independent N(0,1) variables.
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Mean? — Standard deviation? — distribution?
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Distribution of a sample mean

In practice we only observe one sample mean, so how can we find
its distribution?

• Answer: Mathematical computation!

• Because a mean of n independent N(µ,σ2)-variables is
normal with mean µ and standard deviation σ/

√
n

. . . and σ can be estimated from the sample.

Slide 5 — Statistics for Life Science (Week 3-2 2010) — Statistical inference

Statistical model

Histogram and N-density
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Statistical model:
y1, . . . ,y162 are independent and yi ∼ N(µ,σ2)
In words, the observations are normally distributed, have the same
mean, the same standard deviation and are independent.
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Estimation

Statistical model:

y1, . . . ,y162 ∼ N(µ,σ2) independent

Parameters in the model

• mean µ — in the population

• standard deviation σ — in the population

Estimation: The population parameters are estimated as the
sample statistics:

• µ̂ = ȳ

• σ̂ = s
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Precision of µ̂

The estimate µ̂ tells nothing about the precision. But we know that

• sd(ȳ) = σ/
√
n

• ȳ is within µ±1.96 ·σ/
√
n with 95% probability.

But we don’t know σ , just the estimate (s).

• Standard error of ȳ — estimated standard deviation:

SE(ȳ) = s/
√
n

• ȳ is within µ±??? · s/
√
n with probability 95%.
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The t-distribution

df = 1,4 and N(0,1)
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Standardization

z =

√
n(ȳ −µ)

σ
∼ N(0,1),

When the estimate, s, of σ is
inserted the distribution is
changed from a normal
distribution to a t-distribution:

T =

√
n(ȳ −µ)

s
∼ tn−1

The t-distribution with n−1 degrees of freedom.

• Thicker tails than N(0,1)

• Resembles N(0,1) more and more as df increases.
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Confidence interval for µ

If t0.975,n−1 is the 97.5%-quantile in the tn−1-distribution:

P

(
−tn−1,0.975 <

√
n(ȳ −µ)

s
< tn−1,0.975

)
= 0.95.

These two inequalities can be rearranged to give two inequalities
for µ:

P

(
ȳ − tn−1,0.975 ·

s√
n
< µ < ȳ + tn−1,0.975 ·

s√
n

) = 0.95

This interval contains the population mean, µ, with probability
95%.

The interval is called a 95% confidence interval for µ.
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Confidence intervals: weights of crabs

Recall: n = 162, ȳ = 12.75 and s = 2.25.

Quantiles:

> qt(0.975,161)

[1] 1.974808

> qt(0.95,161)

[1] 1.654373

Compute

• Standard error, SE(µ̂)?

• 95% confidence interval?

• 90% confidence interval?
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Confidence intervals: interpretation

95%-confidence interval for µ

ȳ ± tn−1,0.975 ·
s√
n

= µ̂± tn−1,0.975 ·SE(µ̂)

Interpretation: with probability 95%, the interval contains the
population mean, µ.

What happens when the sample size, n, increases? Does the 95%
confidence interval become wider or narrower?
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Confidence intervals: interpretation
If we repeated the experiment, then in the long run 95% of the
confidence intervals would contain the population mean.

Confidence intervals for 50 data sets from N(0,1).
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The central limit theorem

The main reason that the normal distribution is so important.

The central limit theorem
Assume that Y1, . . . ,Yn are independent random variables with the
same distribution with mean µ and standard deviation σ . Then
their mean

Ȳ =
1

n

n

∑
i=1

Yi ∼ N(µ,σ2/n),

has a distribution which approaches the normal distribution as n
increases. More precisely,

P

(
Ȳ −µ

σ/
√
n
≤ z

)
→ Φ(z)

Hence, the confidence interval for the mean may be OK, even if
the population is not normal.
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Summary: a single sample

• Statistical model: y1, . . . ,y162 independent and yi ∼ N(µ,σ2)

• Parameters, µ and σ : mean and standard deviation in the
population.

• Estimates: µ̂ = ȳ and σ̂ = s

• Distribution of the estimate: µ̂ is normal with mean µ and
standard deviation σ/

√
n

• Standard error is an estimate of the standard deviation of an
estimate: SE(µ̂) = s/

√
n

• 95%-confidence interval:
ȳ ± tn−1,0.975 · s√

n
= µ̂± tn−1,0.975 ·SE(µ̂)
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Statistical model and parameters

Statistical model: the deviations from the straight line are normally
distributed and independent

yi = α + β ·xi + ei , e1, . . . ,en ∼ N(0,σ2) uafhængige

In words: The mean of yi is α + β ·xi and the remainders (or
residuals) are normal and independent with the same standard
deviation.

Parameters (population constants)

• Intercept α and slope β

• Standard deviation σ for the deviations from the line
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Estimates and distribution of the estimates

Estimates β̂ and α̂ shown earlier (Chapter 2).

Estimate of the residual standard deviation:

s =

√
1

n−2

n

∑
i=1

(yi − α̂− β̂ ·xi )2 =

√
1

n−2

n

∑
i=1

r2i

β̂ and α̂ are normally distributed:

β̂ ∼N

(
β ,

σ2

SSx

)
, α̂ ∼N

(
α,σ2

(
1

n
+

x̄2

SSx

))
, SSx =

n

∑
i=1

(xi − x̄)2.

The statistical experiment is an instrument that “measures” the
values α and β with a precision given by the standard errors.
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Standard errors and confidence intervals

Distributions:

β̂ ∼ N

(
β ,

σ2

SSx

)
, α̂ ∼ N

(
α,σ2

(
1

n
+

x̄2

SSx

))
Standard errors — estimates of standard deviations

SE(β̂ ) =
s√
SSx

, SE(α̂) = s

√
1

n
+

x̄2

SSx

95% confidence intervals:

β̂ ± t0.975,n−2 ·SE(β̂ ), α̂± t0.975,n−2 ·SE(α̂)

Note: t-distribution with n−2 degrees of freedom is used.
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Stearic acid example

> model1 = lm(digest~st.acid}

> summary(model1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 96.53336 1.67518 57.63 1.24e-10 ***

st.acid -0.93374 0.09262 -10.08 2.03e-05 ***

Residual standard error: 2.97 on 7 degrees of freedom

• Statistical model? Interpretation of models?

• Estimates? Confidence intervals?

Slide 19 — Statistics for Life Science (Week 3-2 2010) — Statistical inference

Reflection: What is a statistical model?

• A statistical model describes the probability distribution of the
population from which our sample is drawn.

• But how can we know that?

• We can’t, but a model is just a rough picture displaying the
important features.

• Some of these features are not known. This is why we
measure a sample.

• Therefore a statistical model is not complete; some aspects
have to be estimated from the sample.

• These aspects may be given as a number of parameters such
as mean and standard deviation.

• The remaining part of the model is assumed and should be
validated as well as possible.

Without a model we have no basis for probability calculations.
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A typical statistical model

Many statistical models consist of two parts:

observation = fixed part + random part

= predictable part + unpredictable part

Predictable means that it depends on factors we know (type of
antibiotics, amount of stearic acid, age, treatment, etc.).
The random part is defined by the equation above as the remainder
(or residual)

random part = observation−fixed part

The random part is often assumed to be normally distributed.
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Main points from this lecture

• Statistical model and parameters

• Estimates, distribution of estimates, standard error

• Confidence intervals: estimate± t-fraktil ·SE(estimate) and
interpretation
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