

UNIVERSITY OF COPENHAGEN

FACULTY OF LIFE SCIENCES

Antibiotics and decomposition of organic material

Data

- Five types antibiotics and a control treatment.
- 36 heifers in 6 treatment groups. Feed with antibiotics added.
- Dung deposits in bags in the ground. After 8 weeks amount of organic material measured.
- For spiramycin: only four usable measurements,

Problem(s):

- Do the antibiotics affect the decomposition of organic material?
- How do the five antibiotics compare with the control?
- They seem to give higher values, but can we conclude that they counteract the decomposition?

deviations

Type

Control

 α -cyperm.

Fenbendaz.

lvermectin

Spiramycin

de 5 — Statistics for Life Science (Week 2-2 2010) — ANOVA

Enrofloxacin

Enr Fen

lve Spi

FACULTY OF LIFE SCIENCES

Populations, samples and estimates

Population vs. sample

- The 34 heifers is a sample from the population of heifers.
- More precisely we imagine that we could continue sampling heifers to each of the treatment groups belonging to six (infinite) treatment populations: heifers given treatment 1, heifers given treatment 2, etc.
- Our sample is assumed to be representative for its population.
- Computations necessarily are done on the sample
- but conclusions should regard the populations to be useful.

• Do we need anything but the numbers and the graphs?

ί.

3.0

Organic material .6 2.7 2.8 2.9

2.5

2.4

Con Alp

Group means and group-wise standard

Si

0.119

0.117

0.162

0.124

0.109

0.054

• What would you conclude?

n

6

6

6

6

2.603

2.895

2.710

2.833

3.002

4 2.855

EXECUTIVATE OF LIFE SCIENCES Population and sample means Let α_j denote the population mean for heifers given treatment j The sample mean y i is the estimate for α_j: â_j = y i What does it mean if there is no effect of antibiotics?

NIVERSITY OF COPENHAGEN

lide 6 — Statistics for Life Science (Week 2-2 2010) — ANOVA

Notation

- k = number of groups, here k = 6
- n_j = number of obs. in group j, here $n_1 = \cdots = n_5 = 6$, $n_6 = 4$.
- g(i) denotes the group for observation *i*. For example

 $g(1) = \cdots = g(6) = \text{control}, \quad g(31) = \cdots = g(34) = \text{Spiramycin}$

or

$$g(1) = \cdots = g(6) = 1,$$
 $g(31) = \cdots = g(34) = 6.$

• Sample mean and sample standard deviation in group *j*:

$$ar{y}_j = rac{1}{n_j} \sum_{i: g(i) = j} y_i \qquad s_j = \sqrt{rac{1}{n_j - 1} \sum_{i: g(i) = j} (y_i - ar{y}_j)^2}$$

but really just the mean and standard deviation for group j.

UNIVERSITY OF COPENHAGEN

FACULTY OF LIFE SCIENCES

Pooled standard deviation

If it is reasonable to assume similar variation in all groups, it is better to use all the groups to compute a single standard deviation reflecting the within-group variation.

Pooled within-group sample standard deviation:

$$s = \sqrt{\frac{1}{n-k} \sum_{j=1}^{k} (n_j - 1) s_j^2}$$
$$= \sqrt{\frac{1}{28} (5 \cdot s_1^2 + 5 \cdot s_2^2 + \dots + 3 \cdot s_6^2)} = 0.1217$$

The pooled within-group sample variance is s^2 , and it is a weighted mean of the group sample variances.

Slide 9 — Statistics for Life Science (Week 2-2 2010) — ANOVA

UNIVERSITY OF COPENHAGEN			LTY OF LIFE SC	IENCES
Analysis of variance (ANOVA) table				
Variation	SS	df (degrees of freedom)	MS = SS/df	
Between types	0.5908	k - 1 = 5	0.1182	
Residual	0.4150	n - k = 28	0.0148	
Total	1.0058	n - 1 = 33		

The table splits the total variation into two parts, because

$$SS_{total} = SS_{grp} + SS_{e}$$

and

$$df_{total} = df_{grp} + df_e$$

Variation within and between groups

IVERSITY OF COPENHAGENFACULTY OF LIFE SCIENCESResidualsRecall the residuals from the linear regression: $r_i = y_i - \hat{\alpha} - \hat{\beta} \cdot x_i$.One-way ANOVA:• Residuals

 $r_i = y_i - \bar{y}_{g(i)} = \text{observation} - \text{estimate}$

• Residual sum of squares is SS_e:

$$SS_e = \sum_{i=1}^n (y_i - \bar{y}_{g(i)})^2 = \sum_{i=1}^n r_i^2$$

• The pooled standard deviation can be obtained from the residual sum of squares:

$$s = \sqrt{\frac{1}{n-k}\sum_{i=1}^{n}r_{i}^{2}} = \sqrt{\frac{1}{\mathrm{df}_{e}}\sum_{i=1}^{n}r_{i}^{2}}$$

This holds for all linear models (coming later ...!)

Two unpaired or paired samples

Unpaired samples: 2 groups — one-way ANOVA.

Paired samples: ToDo!

lide 13 — Statistics for Life Science (Week 2-2 2010) — ANOVA

• Pooled standard deviation, *s*

One-way ANOVA: summary

• Still need statistical assessment of some kind to conclude if the population groups are different.

Slide 14 — Statistics for Life Science (Week 2-2 2010) — ANOVA

UNIVERSITY OF COPENHAGEN

6