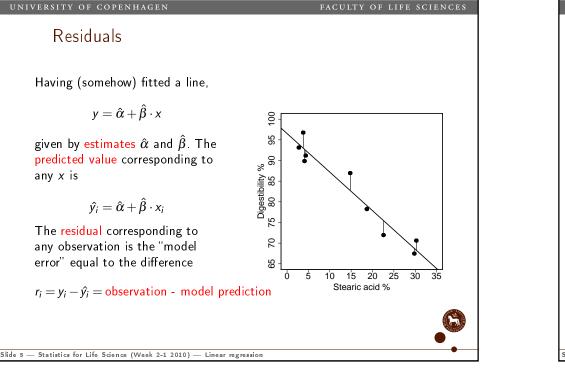
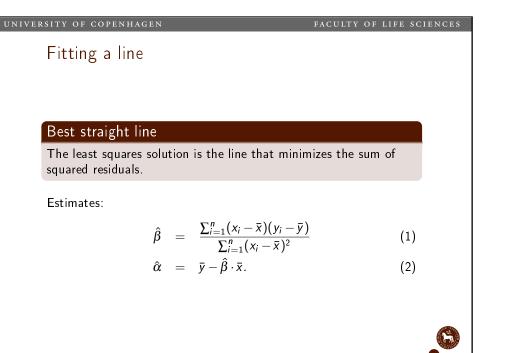
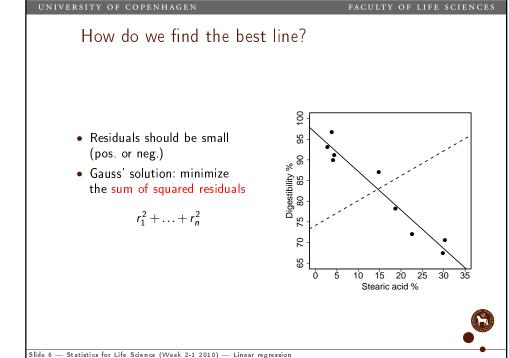


Slide 4 — Statistics for Life Science (Week 2-1 2010) — Linear regression

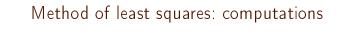






UNIVERSITY OF COPENHAGEN							LTY OF LIFE SCI
	Exan	nple					
i	x	у	$(x_i - \bar{x})$	$(y_i - \overline{y})$	$(x_i - \bar{x})^2$	$(y_i - \overline{y})^2$	$(x_i-\bar{x})(y_i-\bar{y})$
1	29.8	67.5	15.211	-15.411	231.378	237.502	-234.420
2	30.3	70.6	15.711	-12.311	246.839	151.563	-193.421
3	22.6	72.0	8.011	-10.911	64.178	119.052	-87.410
4	18.7	78.2	4.111	-4.711	16.901	22.195	-19.368
5	14.8	87.0	0.211	4.089	0.045	16.719	0.863
6	4.1	89.9	-10.489	6.989	110.017	48.845	-73.306
7	4.4	91.2	-10.189	8.289	103.813	68.706	-84.455
8	2.8	93.1	-11.789	10.189	138.978	103.813	-120.116
9	3.8	96.7	-10.789	13.789	116.400	190.133	-148.767
Sum	131.3	746.2	0.000	0.000	1028.549	958.529	-960.399

Slide 8 — Statistics for Life Science (Week 2-1 2010) — Linear regression



Find α and β to make

 $\sum_{i} r_i^2 = \sum_{i} (y_i - \alpha - \beta \cdot x_i)^2$

as small as possible. Solve the equations

$$\frac{\partial f}{\partial \alpha} = \sum_{i=1}^{n} \frac{\partial}{\partial \alpha} (y_i - \alpha - \beta \cdot x_i)^2 = \sum_{i=1}^{n} 2(y_i - \alpha - \beta \cdot x_i) \cdot (-1)$$
$$= -2 \cdot (y_{\bullet} - n\alpha - \beta x_{\bullet}) = 0 \qquad (3)$$
$$\frac{\partial f}{\partial \beta} = \sum_{i=1}^{n} 2(y_i - \alpha - \beta \cdot x_i) \cdot (-x_i) = 0 \qquad (4)$$

FACULTY OF LIFE SCIENCES

Slide 9 — Statistics for Life Science (Week 2-1 2010) — Linear regression

N I V	ERSIII	OF COP	ENHAGEN	
	Tra	nsfori	mations	5
	iiu	1101011	nacions	<i>.</i>

Duckweed

Days	Leaves	Days	Leaves
0	100	7	918
1	127	8	1406
2	171	9	2150
3	233	10	2800
4	323	11	4140
5	452	12	5760
6	654	13	8250

What if data follow a curved relation? Sometimes we can transform data to make the relation linear Exponential growth model for population size at time t:

$$f(t) = c \cdot \exp(b \cdot t)$$

Taking logarithm on both sides we get

$$\log(f(t)) = \underbrace{\log c}_{\alpha} + \underbrace{b}_{\beta} \cdot t.$$

Slide 10 — Statistics for Life Science (Week 2-1 2010) — Linear regression

NIVERSITY OF COPENHAGEN

FACULTY OF LIFE SCIENCES

The correlation coefficient

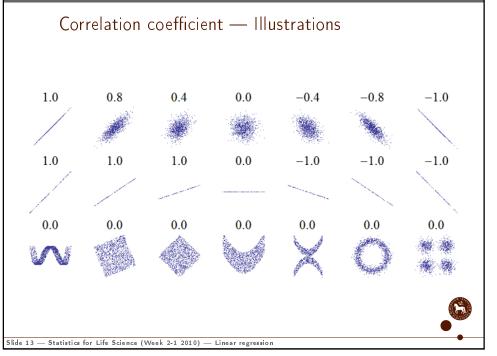
The correlation coefficient, ρ , quantifies how close the *linear* relation is between X and Y:

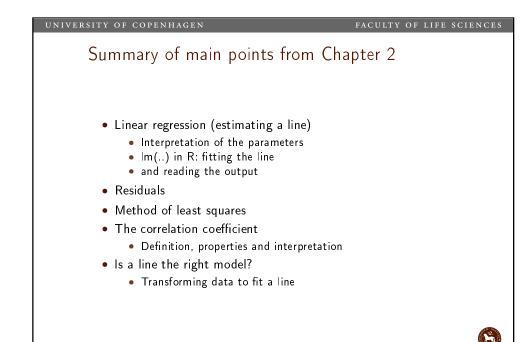
$$\hat{\rho} = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{(\sum_i (x_i - \bar{x})^2)(\sum_i (y_i - \bar{y})^2)}}$$

The correlation coefficient is always between -1 and 1, and it is

- 0 if there is no relation between x and y,
- 1 if the observations (x_i, y_i) are exactly on a line with positive slope,
- -1 if the observations (x_i, y_i) are exactly on a line with negative slope.

Slide 12 — Statistics for Life Science (Week 2-1 2010) — Linear regression





Slide 14 — Statistics for Life Science (Week 2-1 2010) — Linear regression