Comparison of groups
One-way ANOVA

Ib Skovgaard & Claus Ekstrøm
E-mail: ims@life.ku.dk

Program

- Comparison of two groups: overview
- Comparison of more than two groups: one-way ANOVA
 - Data: antibiotics and decomposition of organic material
 - Statistical model
 - Estimation and confidence intervals
 - Comparison of the groups (test)
 - Pairwise comparisons

Antibiotics and the decomposition of organic material

Data
- Five types antibiotics and a control
- 36 heifers allocated to 6 treatment groups. Feed added antibiotics
- Dung suspended in bags in the ground
- Amount of organic material measured after 8 weeks.
- For spiramycin: only four measurements available

Problem:
- Does the antibiotics affect the decomposition of organic material?

Comparison of two samples: overview

<table>
<thead>
<tr>
<th>x, y indep.?</th>
<th>Same sd.?</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example?</td>
<td>Yes</td>
<td>t.test(x,y, var.equal=T)</td>
</tr>
<tr>
<td>Example?</td>
<td>Yes</td>
<td>t.test(x,y)</td>
</tr>
<tr>
<td>Example?</td>
<td>No</td>
<td>t.test(x,y, paired=T)</td>
</tr>
</tbody>
</table>

For comparison of two groups some form of t-test may be used.

What about comparison of three or more groups?
One-way ANOVA!
Group means and standard deviations

<table>
<thead>
<tr>
<th>Type</th>
<th>n</th>
<th>(\bar{y}_j)</th>
<th>s_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6</td>
<td>2.603</td>
<td>0.119</td>
</tr>
<tr>
<td>(\alpha)-cyperm.</td>
<td>6</td>
<td>2.895</td>
<td>0.117</td>
</tr>
<tr>
<td>Enrofloxacin</td>
<td>6</td>
<td>2.710</td>
<td>0.162</td>
</tr>
<tr>
<td>Fenbendaz.</td>
<td>6</td>
<td>2.833</td>
<td>0.124</td>
</tr>
<tr>
<td>Ivermectin</td>
<td>6</td>
<td>3.002</td>
<td>0.109</td>
</tr>
<tr>
<td>Spiramycin</td>
<td>4</td>
<td>2.855</td>
<td>0.054</td>
</tr>
</tbody>
</table>

Pooled estimate of the standard deviation:

\[s = \sqrt{\frac{1}{28} (5 \cdot s_1^2 + \cdots + 3 \cdot s_6^2)} = \sqrt{\frac{1}{34} \cdot 6 \sum_{i=1}^{n} (y_i - \bar{y}_{g(i)})^2} = 0.1217 \]

Statistical model

Recall that \(g(i)\) denotes the group for observation \(i\). For example

\[g(1) = \cdots = g(6) = \text{control}, \quad g(31) = \cdots = g(34) = \text{Spiramycin} \]

\[g(1) = \cdots = g(6) = 1, \quad g(31) = \cdots = g(34) = 6. \]

Statistical model: \(y_1, \ldots, y_{34}\) are independent and

\[y_i \sim N(\alpha_{g(i)}, \sigma^2) \]

Parameters: \(\alpha_1, \ldots, \alpha_6\) and \(\sigma\).

Equivalently:

\[y_i = \alpha_{g(i)} + e_i, \quad e_1, \ldots, e_{34} \sim N(0, \sigma^2) \text{ independent} \]

Estimation and confidence intervals

Statistical model:

\[y_i = \alpha_{g(i)} + e_i, \quad e_1, \ldots, e_{34} \sim N(0, \sigma^2) \text{ independent} \]

Parameters: \(\alpha_1, \ldots, \alpha_k\) and \(\sigma\). In particular, we are interested in differences, \(\alpha_j - \alpha_l\)!

Estimates and standard errors:

\[\hat{\alpha}_j = \bar{y}_j; \quad \text{SE}(\hat{\alpha}_j) = s \sqrt{1/n_j} = s/\sqrt{n_j} \]

\[\hat{\alpha}_j - \hat{\alpha}_l = \bar{y}_j - \bar{y}_l; \quad \text{SE}(\hat{\alpha}_j - \hat{\alpha}_l) = s \sqrt{1/n_j + 1/n_l} \]

\[\hat{\sigma} = s \]

Confidence intervals from the usual recipe:

\[\text{estimate} \pm t_{0.975, n-k} \cdot \text{SE(estimate)} \]

NB. The pooled \(s\) is used, also when comparing two groups!
One-way ANOVA in R

Fitting the model:

```r
> model1 <- lm(org~factor(type))
> summary(model1)
```

R chooses a reference group — the first in alphabetic order — and estimates changes compared to that group.

We prefer the control group as the reference group:

```r
> type <- relevel(type, ref="Control")
> model1 <- lm(org~factor(type))
> summary(model1)
```

Output from `summary(model1)`:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) | 2.60333 | 0.04970 | 52.379 | < 2e-16 *** |
| factor(type)Alfacyp | 0.29167 | 0.07029 | 4.150 | 0.000281 *** |
| factor(type)Enroflox | 0.10667 | 0.07029 | 1.518 | 0.140338 |
| factor(type)Fenbenda | 0.23000 | 0.07029 | 3.272 | 0.002834 ** |
| factor(type)Ivermect | 0.39833 | 0.07029 | 5.667 | 4.5e-06 *** |
| factor(type)Spiramyc | 0.25167 | 0.07858 | 3.202 | 0.003384 ** |

Residual standard error: 0.1217 on 28 degrees of freedom

Interpretations:

- Estimate and CI for $\alpha_{\text{cont}}, \alpha_{\text{Fenb}} - \alpha_{\text{cont}}$ and α_{Fenb}? Estimat for σ?
- Why are the SE's not the same?

If we prefer to see the group means:

```r
> model2 <- lm(org~factor(type)-1)
> summary(model2)
```

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| factor(type)Control | 2.60333 | 0.04970 | 52.38 | <2e-16 *** |
| factor(type)Alfacyp | 2.89500 | 0.04970 | 58.25 | <2e-16 *** |
| factor(type)Enroflox | 2.71000 | 0.04970 | 54.53 | <2e-16 *** |
| factor(type)Fenbenda | 2.83333 | 0.04970 | 57.01 | <2e-16 *** |
| factor(type)Ivermect | 2.70167 | 0.04970 | 58.25 | <2e-16 *** |
| factor(type)Spiramyc | 2.85500 | 0.06087 | 46.90 | <2e-16 *** |

Residual standard error: 0.1217 on 28 degrees of freedom

Hypothesis. Variation within and between groups

Hypothesis, $H_0: \alpha_1 = \cdots = \alpha_k$.

Alternative, H_A: at least two α's are different.

- Variation within groups — points around the lines
 $SS_e = \sum_{i=1}^n (y_i - \bar{y}(g(i)))^2$
- Variation between groups — Lines around the dashed line
 $SS_{\text{grp}} = \sum_{j=1}^k n_j (\bar{y}_j - \bar{y})^2$
- Test statistic
 $F = \frac{MS_{\text{grp}}}{MS_e} = \frac{SS_{\text{grp}}/(k-1)}{SS_e/(n-k)}$
Comparison af alle groupsne

Do not use model2 for this — only model1

> anova(model1)

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>factor(type)</td>
<td>5</td>
<td>0.59082</td>
<td>0.11816</td>
<td>7.9726</td>
</tr>
<tr>
<td>Residuals</td>
<td>28</td>
<td>0.41500</td>
<td>0.01482</td>
<td></td>
</tr>
</tbody>
</table>

Test statistic

\[
F = \frac{MS_{grp}}{MS_e} = \frac{SS_{grp}/(k-1)}{SS_e/(n-k)}
\]

Large values of \(F \) are in disagreement with the hypothesis. Hence, the \(p \)-value is

\[p = P(F \geq F_{obs}) = P(F \geq 7.97) = 0.00009 \]

There is overwhelming evidence that the hypothesis is not true.

How did we get the \(p \)-value?

The \(F \)-distribution

If the hypothesis is true, then the \(F \)-test statistic is \(F \)-distributed with \((k-1,n-k)\) degrees of freedom.

\[
p = P(F \geq 7.97) = 0.00009
\]

F-probabilities and quantiles in R:

\[
> pf(7.97, df1=5, df2=28)
\]

\[
[1] 0.9999102
\]

\[
> qf(0.95, df1=5, df2=28)
\]

\[
[1] 2.558128
\]

Pairwise comparisons

Suppose we want to compare the control group (1) with the Fenbendazole group (4): \(\alpha_4 - \alpha_1 \).

Estimate and its standard error:

\[
\hat{\alpha}_4 - \hat{\alpha}_1 = 2.833; \quad SE(\hat{\alpha}_4 - \hat{\alpha}_1) = 0.07029
\]

- Confidence interval for \(\alpha_4 - \alpha_1 \)?
- Test for the hypothesis \(H_0: \alpha_5 = \alpha_4 \)?
- Do all the groups differ significantly from the control group?

LSD-value: least significant difference

A confidence interval for the difference \(\alpha_j - \alpha_l \) is

\[
\hat{\alpha}_j - \hat{\alpha}_l \pm \text{LSD}
\]

where

\[
\text{LSD}_{j,l} = t_{0.975,n-k} \cdot SE(\hat{\alpha}_j - \hat{\alpha}_l) = t_{0.975,n-k} \cdot s \cdot \sqrt{1/n_j + 1/n_l}.
\]

A \(t \)-test for the hypothesis that the difference is zero uses the test statistic

\[
T = \frac{|\alpha_j - \alpha_l|}{\text{SE}(\hat{\alpha}_j - \hat{\alpha}_l)}
\]

which is \(t \)-distributed with \(n-k \) degrees of freedom.

LSD for control and fenbend.: \(2.048 \cdot 0.1217 \cdot \sqrt{1/6 + 1/6} = 0.144 \)

If all group sizes are the same, then so are the LSD-values:

\[
\text{LSD} = t_{0.975,n-k} \cdot s \cdot \sqrt{2/n'}
\]
Conclusion

Different effects of the different types has been shown with high degree of certainty ($p < 0.0001$)

For all types except Enrofloxacin the amount of organic material is significantly higher than for the control group.

These statements should be supplemented by estimates and confidence intervals for α's and/or for differences to the control group.

Multiple comparisons

Any time we make a test a type I error may occur. The risk depends on the level of significance — often 5%.

One test: risk of type I error: 5%
By m independent tests:

$$1 - 0.95^m$$

Summary: one-way ANOVA

- Statistical model: normal distribution with same SD in the groups; independence
- Estimation: group means and pooled SD
- Confidence interval: $\text{estimate} \pm t_{0.975,n-k} \cdot \text{SE(estimate)}$
- Hypothesis of equal group means tested by $F = \text{MS}_{\text{grp}}/\text{MS}_e$
- Pairwise comparisons conducted “within” the model, using all the observations to estimate the SD.

With only two groups, t-tests suffice. Different versions:
- Paired or unpaired?
- If unpaired: same SD or not?

Lecture summary: main points

- One-way ANOVA
- Assumptions for one-way ANOVA
- Hypotheses for one-way ANOVA
- Test statistic and the F-fordelingen